# Séminaire Dubreil. Algèbre et théorie DES NOMBRES 

## Viakalathur S. Krishnan

## Semimetrics, semiécarts in ordered semigroups

Séminaire Dubreil. Algèbre et théorie des nombres, tome 24, n ${ }^{\circ} 1$ (1970-1971), exp. n ${ }^{\circ}$, p. 1-4
[http://www.numdam.org/item?id=SD_1970-1971__24_1_A1_0](http://www.numdam.org/item?id=SD_1970-1971__24_1_A1_0)
© Séminaire Dubreil. Algèbre et théorie des nombres
(Secrétariat mathématique, Paris), 1970-1971, tous droits réservés.
L'accès aux archives de la collection «Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## SEMIMETRICS, SEMIÉCARTS IN ORDERED SEMIGROUPS

by Viakalathur S. KRISHNAN (*)

Completing a metric space is a classic construction. Starting with the space of rationals $Q$ (or $Q^{n}$ ) with its metric taking values in the ordered semigroup of positive rationals, its completion $R$ (or $R^{n}$ ) has a metric in the completion, in a suitable sense, of $Q^{+}$, which is the ordered semigroup of positive reals. That this result admits natural generalizations is the main contention of this paper.

First, we abstract the properties of the semigroups $Q^{+}$or $R^{+}$in the definition of the "Abelian perfectly ordered semigroup".

Definition. - An Abelian perfectly ordered semigroup (or Apo-semigroup, for short) is a triple ( $S,+, \leqslant$ ) consisting of a set $S$, a binary operation + defined on $S$ under which $(S,+)$ is a commutative semigroup with zero element 0 , and a relation of partial order $\leqslant$ defined on $S$ such that the following conditions are satisfied :
(a) For arbitrary $x, y, z$ from $S, x \leqslant y$ if, and only if, $(x+z) \leqslant(y+z)$
(b) The set $H=(x \in S ; 0<x)$ is down-directed and weakly divisible : that is, if $x, y$ are in $H$, there is a $z$ in $H$ which is $\leqslant x, y$ and if $x$ is in $H$, there is a $x^{\prime}$ in $H$ such that $x^{\prime}+x^{\prime} \leqslant x$.

It is not hard to show that the last condition (b) is true for $H$ if, and only if, it is true of some coinitial subset of ( $\mathrm{H}, \leqslant$ ).

We next define a semimetric or semiécart for a set $X$ into such a Apo-semigroup.
Definition. - Given a set $X$, and an Apo-semigroup ( $S,+, \leqslant$, a mapping $d$ of $X \times X$ in $S$ is called a semimetric for $X$ in ( $S,+, \leqslant$ ) (is called a semiécart for $X$ in ( $S,+, \leqslant)$ ), if it satisfies the following condition : for any $x, y, z$ from $X, d(x, z) \leqslant d(x, y)+d(y, z)$ (if it satisfies the following condition : given $h$ in $H$ there is $h$ in $H$ such that for arbitrary $x, y, z$ from $X, d(x, y) \leqslant h^{\prime}$ and $d(y, z) \leqslant h^{\prime}$ imply $\left.d(x, z) \leqslant h\right)$.

In view of our assumption (b) for $H$, it follows that a semimetric $d$ for $X$ in ( $S,+, H$ ) is ipso facto a semiécart for $X$ in $(S,+, \leqslant)$.

[^0]Since the condition (a) for the ordered semigroup implies that it is cancellative (being also abelian), the semigroup ( $S,+$ ) can be isomorphically imbedded as a subsemigroup of a group ( $G,+$ ) of differences ; and we can also now extend the partial ordes $\leqslant$ from the subsemigroup (of elements of the form $x-0$ ) to the whole group, by setting $:\left(x-x^{\prime}\right) \leqslant\left(y-y^{\prime}\right)$ if, and only if, $\left(x+y^{\prime}\right) \leqslant\left(x^{\prime}+y\right)$ in $(S, \leqslant)$. Then, it is seen that $(G,+, \leqslant)$ is also an Apo-(semi-)group. We call it the "group-completion" of the Apo-semigroup.

Given the Apo-semigroup $(S,+, \leqslant)$, the set $S$ has a "intrinsic" semimetric in the Apo-group $(G,+, \leqslant)$ which is the group completion of $(S,+, \leqslant)$; namely $d$, given by $d\left(x, x^{\prime}\right)=x^{\prime}-x$.

Note also that when $d$ is a semimetric (or semiécart) for $X$ in ( $S,+, \leqslant$, there is a conjugate semimetric $d^{\prime}$ given by $d^{\prime}(x, y)=d(y, x)$ for any $x, y$ from $X$.

We pass on to define the "semiuniform spaces" and their "completions".
Definition. - A family $U=\left(U_{j} ; j \in j\right)$ of binary relations on a set $X$ (indexed by a set $J$ ) is called a semiuniformity (or semiuniform structure) for $X$ if the following conditions are true :
(U1) For each $x$ of $X$ and each $j$ of $J,(x, x) \in U_{j}$, that is all the relations $U_{j}$ are reflexive.
(U2) Given $j \in J$, there is $a j^{\prime} \in J$ such that the relational product $U_{j}{ }^{\prime} \cdot U_{j}$, is contained in $U_{j}$.

We may call the family $\mathcal{U}$ a transitive family of relations when (U2) holds, and
(U3) For $j, j^{\prime} \in J$, there is a $j^{\prime \prime} \in J$, such that $U_{j "}$ is contained in both $U_{j}$ and $U_{j}$, $\cdot$

The semiuniformity is called a quasiuniformity, if it satisfies also the follom wing "symmetry" condition :
(U4) Given $j \in J$, there is $j^{\prime \prime} \in J$, such that the reverse relation $U_{j} \prime \prime{ }^{\prime \prime} U_{j} \prime \prime$ is contained in $U_{j}$ -

And finally, the quasiuniformity is a uniformity (in the sense of A. WEIL), if the intersection of the $U_{j}$ is the identity relation on $X$.

A semiuniformity $\mathcal{U}$ for $X$ determines a "conjugate" semiuniformity

$$
u^{-1}=\left(U_{j}^{-1} ; \quad j \in J\right)
$$

obtained by taking the reverse relations for all the $U_{j}$. $\mathcal{U}$ (and its conjugate) also determine a "symmetric" associate semiuniformity (or quasiuniformity)

$$
S(\dot{W})=\left(U_{j} \cap U_{j}^{-1} ; j \in J\right)
$$

A semiuniformity $u$ for $X$ determines a topology $T(u)$ for $X$ when we take as a base of neighbourhoods at a point $x$ of $X$ the sets $\left(U_{j}(x) ; j \in J\right)$ where, as usual, $U_{j}(x)$ consists of the points $y$ of $X$ for which ( $\left.x, y\right) \in U_{j}$. The topology $T(S(U))$ determined by the symmetric associate $S(U)$ of $u$, we shall call the "star topology" determined by $\mathcal{U}$, and denote it by $T^{*}(\mathcal{\text { u }}$ ).

If now ( $D, \leqslant$ ) is any down-directed (indexing) set, a function $s$ of $D$ in $X$ is called a ( $D, \leqslant$-sequence in $X$. Such a sequence is said to converge to a point $x$ of $X$ under a topology $T$ for $X$ if, for each neighbourhood $N(x)$ of $x$ in $T$, we can find $a$ in $D$ such that $s(e)$ belongs to $N(x)$ for each $e$ (of $D$ ) which is $\leqslant \alpha$. And such $a(D, \leqslant$-sequence $s$ in $X$ is called a Cauchy sequence of the semiuniform space ( $X, \chi$ ) . $\hat{f} f$, for each $U_{j}$ in $\mathcal{U}$, we can find a $d$ in $D$ such that $\left(s(e), s\left(e^{\prime}\right)\right) \in U_{j}$ whenever $e, e^{\prime}$ (of $D$ ) are $\leqslant d$. Clearly, a Oauchy sequence of (X, u) is also a Cauchy sequence of (X, $\mathrm{S}(\mathrm{u})$ ), and vice-versa. It con be shown that any ( $D, \leqslant$ )-sequence of $X$, which converges to some point of $X$ under $T^{*}(U)$, is a Cauchy sequence of ( $X, \mathcal{U}$ ). The semiuniform space ( $X$, $\mathcal{U}$ ) is called a complete semi-uniform space if every Cauchy sequence of ( $X, U$ ) converges to some point of $X$ under $T^{*}(U)$. It follows that ( $X, \mathcal{U}$ ) is complete if, and only if, ( $X, S(q:)$ ) is complete.

We state then the main theorem regarding completing a semiuniform space (which I have proved elsewhere).

THEOREM 1. - Given a semiuniform space (X , U) there is an associated complete semiuniform space ( $\mathrm{X} *$, $\mathrm{U}^{*}$ ) , which we call the canonical completion of ( $\mathrm{X}, \boldsymbol{u}$ ), such that : there is a bi-uniform bijection between ( $\mathrm{X}, \tilde{\mathcal{L}}$ ) and a semiuniform subspace of $\left(X *, X^{*}\right)$; and avery point of $X *$ is a limit of a Cauchy sequence of $\left(X^{*}, U^{*}\right)$ consisting of points of this subspace only, the convergence being under the star topology of $X *$ determined by $2 *$.

When we consider a set $X$ with a semiécart (or semimetric) $d$ in Apo-semigroup $(\mathrm{S},+, \leqslant)$, we get an associated semiuniformity $u=\left(U_{h} ; h \in H\right)$ for $X$, when we set $\left((x, y) \in U_{h}\right) \Leftrightarrow(d(x, y) \leqslant h)$. This semiuniformity is symmetric if the semimetric is symmetric. In particular, for a Apo-semigroup the intrinsic semimetric for $S$ in the "group completion" ( $G,+, \leqslant$ ) gives rise to an intrinsic semiuniformity for $(s,+, \leqslant)$. Then we have the following main results.

THEOREM 2. - The completion of an Apo-semigroup is also an Apo-semigroup ; the completion of an Apo-grour is an Apo-group. Upto an order- and serigroup-isomorphism, the semiuniform completion of the group completion of an Apo-semigroup
is the same as the group completion of the semiuniform completion of the Apo-semigroup.

If a set $X$ has a semiécart $d$ in ano-semigroup ( $S,+, \leqslant$, then its canonical completion (as a semiuniform space) has its semiuniformity derivable from a semiécart in the canonical completion of the Apo-semigroup. This can also be treated as a semiécart in the group completion of this last complete semigroup.

If $X$ has a semimetric in a totally ordered Apo-semigroup or group, its canonical completion, as a semiuniform space, has its semiuniformity derivable from a semimetric in the canonical completion of the Apo-semigroup or group, which would also be totally ordered.

Details of proofs would be appearing in a paper shortly in the Proceedings of the Czechoslovak Akademy of Sciences [under a report of a Topology Conferenoe, held at Kanpur (India)].
(Texte reçu le 10 décembee 1970)
Viakalathur S. KRISHNAN
Temple University, Department of Mathematics, PHILADELPHIA, Pa (Etats-Unis)


[^0]:    (*) Conférence prononcée à Nice, en septembre 1970, à la session du Séminaire consacrée aux Demi-groupes.

