SÉminaire Dubreil. Algèbre et théorie DES NOMBRES

Toru Saitô

The orderability of idempotent semigroups

Séminaire Dubreil. Algèbre et théorie des nombres, tome 25, no 2 (1971-1972), exp. $\mathrm{n}^{\circ} \mathrm{J} 8$, p. J1-J7
http://www.numdam.org/item?id=SD_1971-1972__25_2_A8_0
© Séminaire Dubreil. Algèbre et théorie des nombres
(Secrétariat mathématique, Paris), 1971-1972, tous droits réservés.
L'accès aux archives de la collection «Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE ORDERABILITY OF IDEMPOTENT SEMIGROUPS

by Toru SAITÔ

The orderability condition for idempotent semigroups are studied by some authors : M.-L. DUBREIL-JACOTIN [3] for idempotent semigroups with identity, T. MERLIER [4] for finite idempotent semigroups, and T. SAITO [6] for commutative idempotent semigroups. The purpose of this note is to give orderability conditions for general idempotent semigroups. The detailed version [7] will appear elsewhere.

The terminologies of CLIFFORD and PRESTON [2] are used throughout. Let E be a semilattice with respect to a partial order $\leqslant . E$ is called a tree semilattice, if, for every $\alpha \in \mathbb{E}$, the set $\{\zeta \in \mathbb{E} ; \zeta \leqslant \alpha\}$ is a simply ordered set. Let α be an element of a tree semilattice E. We define a binary relation \sim on the set $\overline{\mathrm{U}}_{\alpha}=\{\bar{\xi} \in \mathrm{E} ; \quad \alpha<\xi\}$ by

$$
\text { for } \xi, \eta \in \bar{U}_{\alpha}, \quad \xi \sim \eta \text { if and only if } \alpha<\xi \eta \text {. }
$$

Then \sim is an equivalence relation on $\overline{\mathrm{U}}_{\alpha}$. Each \sim equivalence class is called a branch at α.

Let S be an idempotent semigroup. Then S is a semilattice of rectangular bands $\left\{D_{\alpha} ; \alpha \in S^{*}\right\}$, and the decomposition of S into $\left\{D_{\alpha} ; \alpha \in S^{*}\right\}$ coincides with the decomposition of S into \mathbb{Q}-classes. The semilattice S^{*} is called the associated semilattice of S.

Let S be an idempotent semigroup such that the associated semilattice S^{*} is a tree semilattice and let D be a Q-class of S. Let ξ be a branch of S^{*} at $D \in S^{*}$. Then, the subset $B=\left\{x \in S ; D_{x} \in \mathscr{B}\right\}$ of S is called the componentbranch at D associated with the branch \mathfrak{B}.

If a Q-class D of an idempotent semigroup S consists of one $\mathcal{L}-c l a s s$, then D is called of L-type, while if D consists of one R-class, then D is called of R-type.

By an ordered semigroup S, we mean a semigroup S with a simple order \leqslant satisfying the condition

$$
\text { for } x, y, z \in S, x \leqslant y \text { implies } x z \leqslant y z \text { and } z x \leqslant z y \text {. }
$$

A semigroup S is called orderable if there exists a simple order \leqslant on S such that the system $S(., \leqslant)$ is an ordered semigroup.

Here we refer to some preliminary lemmas :
LEMMA 1 ([5], theorem 3). - The associated semilattice S^{*} of an ordered idem-
potent semigroup S is a tree semilattice.

LIMMA 2 ([5], theorem 1). - In an ordered idempotent semigroup S, each Q-class consists of either one \mathfrak{L}-class or one R-class.

LEMMA 3 [1]. - Let S be a set with a ternary relation f satisfying the conditions:
(a) $(x, y, z) \beta$ implies $(z, y, x) \beta$;
(b) $(x, y, x)_{\beta}$ implies $x=y$;
(c) $(x, y, z) \beta,(y, z, u) \beta$ and $y \neq z$ imply $(x, y, u) \beta$;
(d) For every $x, y, z \in S$, either $(x, y, z)_{\beta}$ or ($\left.y, z, x\right)_{\beta}$ or $(z, X, y)_{\beta} ;$
(e) $(x, y, z)_{\beta}$ and $(x, z, u)_{\beta}$ imply $(y, z, u)_{\beta}$.

Then, there exists a simple order \leqslant on S such that $(x, y, z) \beta$ if and only if either $x \leqslant y \leqslant z$ or $z \leqslant y \leqslant x$:

I

THEOREM A. - An idempotent semigroup S is orderable if and only if it satisfies the following conditions :
(A) The associated semilattice S^{*} of S is a tree semilattice ;
(B) Each ©-class of S consists of either one \mathcal{L}-class or one R-class ;
(C) If D is a D-class of S and $a \in S$ such that $D<D_{a}$ in the associated semilattice S^{*}, then either $a D$ or $D a$ consists of at most two elements of S;
(D) If D is a 0 -class of S of L-type [R-type] and if $a, b, x \in S$ such that $D<D_{a b}$ in the associated semilattice S^{*} and $x \in D$, then $a x=b x \quad[x a=x b]$;
(E) If D is a-class of S of L-type [R-type] and if $a, b, x \in S$ such that $a, b \notin D, a b \in D, x \quad D$ and $a b \neq a x[b a \neq x a]$, then $b a=b x \quad[a b=x b]$;
(F) If D is a 0 -class of S of L-type [R-type] and if $a, b, c \in S$ such that $a, b, c \notin D, a b \in D, a b=a c \quad$ and $b c=b a \quad[b a=c a \quad$ and $c b=a b]$, then $\mathrm{ca} \neq \mathrm{cb}[\mathrm{ac} \neq \mathrm{bc}]$;
(G) If D is a D-class of S of I-type [R-type] and if $a, b, x \in S$ such that $a, b \notin D, a b \in D, x \in D$ and $a x=b x[x a=x b]$, then $x=a b[x=b a]$.

Here we give only a brief survey of the proof of the "if" part by steps.
Let S be an idempotent semigroup satisfying the conditions given in the theorem and let D be a 0 -class of S. We denote by $\left\{B_{\lambda} ; \lambda \in \Lambda\right\}$ the set of all com-ponent-branches at D.

$$
\begin{equation*}
\text { If } B_{\lambda} \neq B_{\mu} \text {, then } B_{\lambda} B_{\mu} \text { is a one-element subset of } S \text {. } \tag{1}
\end{equation*}
$$

We define the ternary relation β on $\left\{B_{\lambda} ; \lambda \in \Lambda\right\}$ by :
If D is of L-type [R-type], then $\left(B_{\lambda}, B_{\mu}, B_{\nu}\right) \beta$ if and only if either $B_{\lambda}=B_{\mu}$ or $B_{\mu}=B_{\nu}$ or $B_{\lambda} \neq B_{\mu}, B_{\mu} \neq B_{\nu}$ and $B_{\mu} B_{\lambda} \neq B_{\mu} B_{\nu}\left[B_{\lambda} B_{\mu} \neq B_{\nu} B_{\mu}\right]$. (2) β satisfies the conditions in lemma 3.

For each $\lambda \in \Lambda$, we define a subset L_{λ} of D as follows :
(i) The case when Λ contains at least two elements.
(ia) If there exists $\mu \in \Lambda$ such that $B_{\mu}<B_{\lambda}$ and if D is of I-type [Rtype] then put

$$
I_{\lambda}=\left\{x \in D ; \quad B_{\lambda} x=B_{\lambda} B_{\mu}\right\} \quad\left[L_{\lambda}=\left\{x \in D ; x_{\lambda}=B_{\mu} B_{\lambda}\right\}\right]
$$

(ib) If there exists $\nu \in \Lambda$ such that $B_{\lambda}<B_{\nu}$ and if D is of I-type [Rtype], then put

$$
I_{\lambda}=\left\{x \in D ; \quad B_{\lambda} x \neq B_{\lambda} B_{\nu}\right\} \quad\left[I_{\lambda}=\left\{x \in D ; \quad{ }_{\lambda} B_{\lambda} \neq B_{\nu} B_{\lambda}\right\}\right]
$$

(ii) The case when Λ consists of one and only one element λ. We take $x_{0} \in D$ arbitrarily and fix it. Then put

$$
L_{\lambda}=\left\{x \in D ; B_{\lambda} x=B_{\lambda} x_{0}\right\} \quad\left[L_{\lambda}=\left\{x \in D ; \quad{ }^{x B} B_{\lambda}=x_{0} B_{\lambda}\right\}\right] .
$$

Further, we define the binary relation γ on D by

$$
x \gamma y \text { if and only if } \lambda \in \Lambda \text { and } y \in L_{\lambda} \text { implies } x \in I_{\lambda} \text {. }
$$

(3) γ is a reflexive and transitive relation on D. Moreover, for each pair of elements x and y of D, we have either $x \gamma y$ or $y \gamma x$.

Hence, if we define

$$
\mathrm{x} \delta \mathrm{y} \stackrel{\operatorname{def}}{\rightleftharpoons} \mathrm{x} \gamma \mathrm{y} \text { and } \mathrm{y} \gamma \mathrm{x} \text {, }
$$

then δ is an equivalence relation on D and the quotient set D / δ is a simply ordered set with respect to the relation \leqslant defined by :
for $K_{1}, K_{2} \in D / \delta, K_{1} \leqslant K_{2} \stackrel{\text { def }}{\Longleftrightarrow} \mathrm{x} y$ for some $\mathrm{x} \in \mathrm{K}$, and $\mathrm{y} \in \mathrm{K}_{2}$.
We denote the quotient set D / δ by Ω_{D} and call an element of Ω_{D} a component of D.
(4) Let D be of L-type [R-type].
(a) If $L_{\lambda} \neq \square$, then $B_{\lambda} L_{\lambda}\left[L_{\lambda} B_{\lambda}\right]$ consists of one and only one element l_{λ} of D.
(b) If $D, ~ L_{\lambda} \neq \square$, then $B_{\lambda}\left(D, L_{\lambda}\right)\left[\left(D, L_{\lambda}\right) B_{\lambda}\right]$ consists of one and only one element u_{λ} of D.

The element ℓ_{λ} is called the lower distinguished element of D corresponding to λ and the element u_{λ} is called the upper distinguished element of D corresponding to λ.
(5) (a) $l_{\lambda} Y \ell_{\mu}$ if and only if $B_{\lambda} \leqslant B_{\mu}$,
(b) $u_{\lambda} \gamma u_{\mu}$ if and only if $B_{\lambda} \leqslant B_{\mu}$.
(6) If $\ell_{\lambda}=u_{\mu}$, then the component K containing the element ℓ_{λ} consists of one and only one element.

Hence, by the well-ordering principle, we can take a simple order in such a way that, if K contains a lower distinguished element ℓ_{λ}, then l_{λ} is the greatest element of K and, if K contains an upper distinguished element u_{μ}, then u_{μ} is the least element of K. Now, we define the simple order on D as the ordinal sum of these simply ordered components.

Finally, we define, for $x, y \in S, x<y$ if and only if either one of the following conditions is satisfied :
(a) $D_{x y}<D_{x}, D_{x y}<D_{y}, B_{\lambda}$ is the component-branch at $D_{x y}$ containing x, B_{μ} is the component-branch at $D_{x y}$ containing y, and $B_{\lambda}<B_{\mu}$;
(b) $D_{x}=D_{x y}<D_{y}, B_{\lambda}$ is the component-branch at $D_{x y}$ containing y, and $x \leqslant \ell_{\lambda}$ in $D_{x y}$;
(c) $D_{x}>D_{x y}=D_{y}, B_{\mu}$ is the component-branch at $D_{x y}$ containing x, and $u_{\mu} \leqslant y$ in $D_{x y} ;$
(d) $D_{x}=D_{y}=D_{x y}$ and $x<y$ in $D_{x y}$.
(7) The relation $<$ on S defines a simple order which is compatible with the semigroup operation.

Let S be an idempotent semigroup.
We divide the condition (D) into following three conditions :
(D1) If D is a D-class of S of L-type [R-type] and if $a, b \in S, a b=b a=b$ and $D<D_{a b}$, then $a x=b x[x a=x b]$ for every $x \in D$;
(D2) If D is a D-class of S of L-type $[R$-type] and if $a, b \in S$, $a \mathscr{L} b[a R b]$, and $D<D_{a b}$, then $a x=b x[x a=x b]$ for every $x \in D$;
(D3) If D is a Q-class of S of I-type [R-type] and if $a, b \in S$, $a R b[a \mathcal{L} b]$, and $D<D_{a b}$, then $a x=b x[x a=x b]$ for every $x \in D$.

Now, we have :
(a) S satisfies condition $(B) \Longleftrightarrow S$ does not contain a subsemigroup isomorphic to the semigroup S_{1} :

$$
S_{1}: \begin{array}{c|cccc}
& \quad x & x & y & z \\
y & u \\
z & u & y & y & x \\
z & x & z & z & x \\
u & u & y & y & u
\end{array}
$$

(b) S satisfies condition (D1) $\Rightarrow S$ does not contain a subsemigroup isomorphic to either one of the two semigroups :
(c) Let S satisfy (B) and (D1). Then, S satisfies condition $(A) \Leftrightarrow S$ does not contain a subsemigroup isomorphic to the semigroup S_{3} :

$$
\begin{gathered}
\\
S_{3}
\end{gathered} \quad \begin{array}{ccccc}
a & a & b & c & x \\
b & a & b & c & x \\
c & b & b & x & x \\
x & x & x & c & x \\
x & x & x & x
\end{array}
$$

(d) Let S satisfy (B). Then, S satisfies condition (C) $\Leftrightarrow S$ does not contain a subsemigroup isomorphic to either one of the two semigroups :
(e) S satisfies condition $(D 2) \Longleftrightarrow S$ does not contain a subsemigroup isomorphic to either one of the two semigroups :
(f) S satisties condition $(G) \Longleftrightarrow S$ does not contain a subsemigroup isomorphic to either one of the two semigroups :
(g) Let S satisfy (G). Then, S satisfies condition $(F) \Leftrightarrow S$ does not contain a subsemigroup isomorphic to either one of the three semigroups :

$$
S_{7}: \begin{array}{c|cccc}
& a & b & c & x \\
\hline a & a & x & x & x \\
b & x & b & x & x \\
c & x & x & c & x \\
x & x & x & x & x
\end{array}
$$

			a	b	c	X	y	z				a					y	z
		a	a	X	X	X	X	X			a	a	y				y	z
		b	y	b	y	y	y	y			b	x					y	z
S_{8}	:	c	z	z	c	Z	z	z	S_{8}^{*}		c	x	y				y	z
		x	X	X	x	X	x	X			X	x					y	z
		y	y	y	y	y	y	y			y	X	V				y	z
		z	z	z	z	z	z	z			z	X					Y	Z

(h) S satisfies condition (D3) $\Leftrightarrow S$ does not contain a subsemigroup isomorphic to either one of the two semigroups :
(i) S satisfies condition $(E) \Longleftrightarrow S$ does not contain a subsemigroup isomorphir to either one of the four semigroups :

THEOREN B. - An idempotent semigroup S is orderable if and only if it does not contain a subsemigroup isomorphic to either one of semigroups $S_{1}-S_{11}^{*}$ given above.

BIBLIOGRAPHY

[1] ALTWEGG (M.). - Zur Axiomatic der teilweise geordneten Mengen, Comment. Math. Helvet., t. 24, 1950, p. 149-155.
[2] CLIFFORD (A. H.) and PRESTON (G. B.). - The algebraic theory of semigroups. Vol. I. - Providence, American mathematical Society, 1961 (Mathematical Surveys, 7) .
[3] DUBREIImJACOTIN (M.-L.). - Sur les 0-bandes, Semigroup Forum, New York, t. 3, 1971, p. 156-159.
[4] MERLIER (T.). - Sur les 0-bandes finies et les demi-groupes totalement ordonnés O-simples, Semigroup Forum, New York, t. 4, 1972, p. 124-149.
[5] SAITO (T.). - Ordered idempotent semigroups, J. Math. Soc. Japan, t. 14, 1962, p. 150-169.
[6] SAITO (T.). - Ordered inverse semigroups, Trans. Amer. math. Soc., t. 153, 1971, p. 99-138.
[7] SAITO (T.). - The orderability of idempotent semigroups (to appear).

Toru SAITO
Department of mathematics Tokyo-Gakugei University TOKYO (Japon)

