SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

A. CEREZO

F. Rouvière

Opérateurs différentiels invariants sur un groupe de Lie

Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973), exp. nº 10, p. 1-9

http://www.numdam.org/item?id=SEDP_1972-1973____A11_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1972-1973, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE GOULAOUIC-SCHWARTZ 1972-1973

OPERATEURS DIFFERENTIELS INVARIANTS SUR UN GROUPE DE LIE

par A. CEREZO et F. ROUVIERE

§ 1. POSITION DU PROBLEME

La situation générale envisagée est la suivante: X est une variété différentiable sur laquelle opère un groupe G de difféomorphismes, et P un opérateur différentiel linéaire sur X, <u>invariant</u> par G : si on pose pour $\phi \in C^{\infty}(X)$, $x \in X$, $g \in G$,

$$(g.\varphi)(x) = \varphi(g.x),$$

la condition d'invariance s'écrit :

$$P(g.\phi) = g.P\phi$$

quels que soient φ et g.

Le problème est l'étude des propriétés particulières de l'équation aux dérivées partielles Pu = f qui résultent de l'invariance; par exemple, si f est invariante par G, existe-t-il une solution invariante par G ? (question largement ouverte).

Les principaux résultats sur les opérateurs invariants sont relatifs au cas particulier où X est un espace homogène G/H, où G est un groupe de Lie et H un sous-groupe fermé. On note alors D(G/H) l'algèbre des opérateurs différentiels sur G/H invariants par l'action de G. Un cas particulier important est celui où H est réduit à l'élément neutre 1, G opérant sur lui-même par translation à gauche ; D(G) est donc l'algèbre des opérateurs différentiels invariants à gauche sur G (à coefficients complexes).

Par exemple, $D(\mathbf{R}^n)$ est l'algèbre des opérateurs à coefficients constants sur \mathbf{R}^n . Leur propriété essentielle qui se généralise à D(G) est de commuter aux translations donc aux convolutions à gauche ; par suite l'existence d'une solution élémentaire (PE = δ) donne des théorèmes d'existence pour l'équation Pu = f, et en premier lieu la <u>résolubilité</u> locale : l'élément neutre admet un voisinage ouvert ω tel que $P\mathcal{D}'(\omega) \supset \mathcal{D}(\omega)$.

Il n'est pas vrai cependant que tout opérateur de D(G) admette une solution élémentaire. Si G est compact, on peut on peut donner une

caractérisation "algébrique" des opérateurs $P \in D(G)$ qui ont une solution élémentaire, ou tels que $PC^{\infty}(G) = C^{\infty}(G)$ (voir [1]). Par exemple sur le tore $T^2 = \mathbb{R}^2 \ / \ \mathbb{Z}^2$, de variables $(\theta_1, \ \theta_2)$, l'opérateur

$$P = \frac{\partial}{\partial \theta_1} - \alpha \frac{\partial}{\partial \theta_2} + i\pi$$

possède ces propriétés si α est un nombre algébrique irrationnel, mais non si α est rationnel ou si α est un nombre de Liouville.

D'autre part, il existe en général des opérateurs $P \in D(G)$ qui ne sont même pas localement résolubles (voir [2]). Par exemple, l'opérateur de Hans Lewy appartient à D(N), où N est un groupe nilpotent de dimension 3.

Pour que soit vérifiées les conditions de commutation nécessaires, il est naturel de se limiter au <u>centre</u> Z(G) de l'algèbre D(G); Z(G) est l'algèbre des opérateurs bi-invariants, i.e. commutant aux translations à droite et à gauche de G. On peut conjecturer que les propriétés classiques de $D(\mathbb{R}^n)$ se généralisent à Z(G): résolubilité locale, solution élémentaire, existence dans C^∞ ... C'est faux: voir ci-dessus l'exemple du tore, abélien, où Z(G) = D(G). Cependant on a les résultats suivants:

- Rafs [7]: si G est nilpotent connexe et simplement connexe, tout $P \in Z(G)$ a une solution élémentaire tempérée.
- Helgason [5] [6]: si G est semi-simple connexe non-compact, de centre fini, et K un sous-groupe compact maximal, et si $P \in D(G/K)$, P a une solution élémentaire et $PC^{\infty}(G/K) = C^{\infty}(G/K)$. (exemple type : $G = SL(2, \mathbb{R})$, K = SO(2), G/K est le demi-plan de Poincaré).

Avec les mêmes hypothèses sur G, tout $P \in Z(G)$ est localement résoluble.

Ces résultats se démontrent toujours en utilisant la transformation de Fourier sur les groupes considérés.

§ 2. GROUPES SEMI-SIMPLES COMPLEXES

Nous étudions ici le cas où G est un groupe de Lie connexe <u>semi-simple complexe</u>. L'hypothèse d'existence de la structure complexe amène certaines simplifications dans la transformation de Fourier de G, mais nous considérerons toujours G comme une variété réelle.

Soit $G = KA_+N$ une décomposition d'Iwasawa de G, où K est un sous-groupe compact maximal de G, A_+ un sous-groupe abélien (isomorphe à un ${\rm I\!R}^m$), N un sous-groupe nilpotent; cette égalité signifie que l'application

$$(k,a_{\perp},n) \mapsto ka_{\perp}n$$

est un difféomorphisme analytique de K x A x N sur G. Soit A le commutant de A dans K ; c'est un sous-groupe abélien de K, isomorphe à $T^m = \mathbb{R}^m/\mathbb{Z}^m$. Dans l'exemple type $G = \mathrm{SL}(2,\mathbb{C})$, on a K = SU(2), A est le groupe des matrices $\begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix}$, r > 0, A des $\begin{pmatrix} e^{i\,\theta} & 0 \\ 0 & e^{-i\,\theta} \end{pmatrix}$, $\theta \in \mathbb{R}$, et N des $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$,

La théorie d'Harish-Chandra [4] précise le rôle du sous-groupe abélien $A = A_A$ (isomorphe à $T^m \times {\rm I\!R}^m$) dans la transformation de Fourier de G :

1) Les représentations de A qui servent à définier la transformation de Fourier sur A sont les

$$T^m \times \mathbb{R}^m \ni (\theta, x) \mapsto e^{i(\langle p, \theta \rangle + \langle \xi, x \rangle)}$$

avec p \in \mathbb{Z}^m , ξ \in ${\rm I\!R}^m$. Si ϕ \in $\mathfrak{D}(A)$, on a

 $n \in \mathbf{C}$.

$$\hat{\varphi}(p,\xi) = \int_{A} e^{i(\langle p,\theta\rangle + \langle \xi,x\rangle)} \varphi(\theta,x) d\theta dx,$$

et la formule d'inversion de Fourier donne

$$\varphi(0) = \sum_{p} \int \widehat{\varphi}(p, \xi) d\xi.$$

Les représentations qui servent à définir la transformation de Fourier sur G sont également indéxées par p, ξ : ce sont des représentations $\pi_{p,\xi}$

sur des sous-espaces de L $^2(K)$. Si f $\in \mathcal{D}(G)$, on définit ses coefficients de Fourier

$$\mathbf{\hat{f}}(\pi_{p,\xi}) = \int_{G} \pi_{p,\xi}(g) \ \mathbf{f}(g) \, \mathrm{d}g.$$

Ce sont des opérateurs d'un espace hilbertien, qui admettent une trace, et on a la formule d'inversion de Fourier :

$$f(1) = \sum_{p \in \mathbb{Z}^m} \int_{\mathbb{R}^m} tr[\hat{f}(\pi_{p,\xi})] R(p,\xi) d\xi$$

où R est une fonction polynomiale de p et ξ (c'est $p^2 + \xi^2$ sur SL(2, 1)).

2) De plus il existe une application linéaire continue

$$\beta: \mathcal{D}(G) \longrightarrow \mathcal{D}(A)$$

telle que, pour tous p, §

(1)
$$\operatorname{tr}[\widehat{\mathbf{f}}(\pi_{p,\xi})] = \widehat{\beta(\mathbf{f})}(p,\xi)$$
(Fourier sur G) (Fourier sur A)

La formule d'inversion de Fourier s'écrit donc

$$f(1) = \Sigma \int \widehat{\beta(f)}(p,\xi) R(p,\xi) d\xi$$
;

or les $R(p,\xi)$ sont les coefficients de Fourier (sur A) d'un opérateur $R\,\in\,D(A)$:

$$f(1) = \sum \int \widehat{R\beta(f)} (p,\xi)d\xi,$$

ce qui, par l'inversion de Fourier sur A, s'écrit

(2)
$$f(1) = (R \beta (f))(1)$$
 (*)

pour $f \in \mathfrak{D}(G)$.

^(*) l'élément neutre de A est noté 1 ou 0 suivant qu'on l'identifie à un sous-groupe de G ou à $T^m \times \mathbb{R}^m$.

§ 3. CONDITIONS SUFFISANTES

Un opérateur $P\in Z(G)$ possède des coefficients de Fourier $P(\pi_{p\,,\,\xi})$:

(3)
$$\widehat{Pf}(\pi_{p,\xi}) = P(\pi_{p,\xi})\widehat{f}(\pi_{p,\xi}).$$

Comme P est bi-invariant, $P(\pi_{p,\xi})$ doit commuter à tous les $\pi_{p,\xi}(g)$; l'irréductibilité des représentations entraı̂ne que $P(\pi_{p,\xi})$ est un opérateur scalaire, et on voit aisément que c'est un polynôme en p et ξ . Ce sont donc les coefficients de Fourier (sur A) d'un opérateur $\beta(P) \in D(A)$, et on a

(4)
$$\beta(Pf) = \beta(P)\beta(f) \quad \text{pour } f \in \mathcal{D}(G)$$

d'après (1) et (3).

L'application $\beta:Z(G)\to D(A)$ est un homomorphisme d'algèbres. Elle permet de ramener un opérateur bi-invariant sur G à un opérateur (bi-) invariant sur A, i.e. à coefficients constants sur $T^m\times {\rm I\!R}^m$, qui peut s'étudier par la transformation de Fourier ordinaire.

Posons $\beta'(P) = t(\beta(^tP))$, où t signifie l'opérateur transposé.

Proposition 1: Soit $P \in Z(G)$. Si $\beta'(P)$ a une solution élémentaire (sur A), alors P a une solution élémentaire (sur G).

 $\begin{array}{lll} \underline{\text{D\'emonstration}} & : & \text{Soit } E \in \mathcal{D}^{!}(A) & \text{telle que } \beta^{!}(P)E = \delta_{A} & \text{(mesure de Dirac de A). Posons } F = \begin{pmatrix} t \\ \beta \end{pmatrix} \begin{pmatrix} t \\ RE \end{pmatrix}, & \text{où } t \\ \beta \end{pmatrix} : \mathcal{D}^{!}(A) \rightarrow \mathcal{D}^{!}(G) & \text{est l'application transpos\'ee de } \beta & \text{d\'efinie paragraphe 2, et } R & \text{est l'op\'erateur de (2). On a, pour } f \in \mathcal{D}(G) : \end{array}$

$$\langle PF, f \rangle = \langle {}^{t}\beta({}^{t}RE), {}^{t}Pf \rangle = \langle {}^{t}RE, {}^{t}\beta({}^{t}P)\beta({}^{t}f) \rangle$$

$$= \langle E, {}^{t}\beta({}^{t}P)R\beta({}^{t}f) \rangle \quad \text{car } D(A) \text{ est commutative}$$

$$= \langle \beta'(P)E, R\beta({}^{t}f) \rangle = R\beta({}^{t}f)(1)$$

$$= f(1) \quad d'après (2),$$

donc $PF = \delta_G$, et F est une solution élémentaire de P.

<u>Proposition 2</u>: Soit $P \in Z(G)$. Si $\beta'(P)$ a une solution élémentaire, alors $PC^{\infty}(G) = C^{\infty}(G)$.

Idée de la démonstration : Il s'agit de montrer (voir [8])

- 1) que P est "résoluble sur les ouverts relativement compacts", i.e., pour $\omega \in G$, $f \in C^{\infty}(G)$, il existe $u \in C^{\infty}(G)$ telle que Pu = f sur ω .
- 2) que G est P-convexe, i.e. pour tout compact K de G, il existe un compact K' tel que, pour $\mu \in \mathcal{E}'(G)$,

$$\mathrm{supp} \ ^{\mathbf{t}} P \mu \subset K \Rightarrow \mathrm{supp} \ u \subset K'.$$

- 1) résulte de l'existence d'une solution élémentaire pour P (proposition 1)
- 2) se démontre en utilisant un lemme de Paley-Wiener sur G.

Pour appliquer les propositions 1 et 2, on peut utiliser un résultat de [1] : soit $Q \in D$ $(T^m \times I\!\!R^m)$ de coefficients de Fourier $Q(p,\xi)$; posons

$$\widetilde{Q}(p,\xi) = (\sum_{\alpha} \left| \frac{\partial^{\alpha}}{\partial \xi^{\alpha}} Q(p,\xi) \right|^{2})^{1/2}.$$

Alors Q a une solution élémentaire si et seulement s'il existe C>0 et $k\in\mathbb{N}$ tels que, pour tout p,

(5)
$$\widetilde{Q}(p,0) \ge C(1+|p|)^{-k}$$
.

Démonstration : C peut s'écrire

$$C = -\sum_{j=1}^{n} X_{j}^{2} + \sum_{j=1}^{n} Y_{j}^{2}$$
,

où les X_j , Y_j sont certains opérateurs invariants à gauche d'ordre un sur G, les X_j étant des dérivations dans la direction du sous-groupe K. Le calcul donne

$$\beta'(C)(p,\xi) = |p|^2 - |\xi|^2 + a$$

(a constant), d'où résulte facilement que $\beta'(\prod(C)) = \prod(\beta'(C))$ vérifie la condition (5).

§ 4. CONDITIONS NECESSAIRES

Restreignons l'application $\beta:\mathcal{D}(G)\to\mathcal{D}(A)$ au sous-espace $\mathcal{D}_K(G)$ des fonctions bi-invariantes par K (i.e. telles que, pour tous k, k' \in K, g \in G, f(kgk') = f(g)).

Alors on peut montrer qu'on obtient un isomorphisme d'espaces vectoriels topologiques

$$\gamma : \mathcal{D}_{K}(G) \rightarrow \mathcal{D}_{W}(A_{+})$$

(l'indice W indique l'invariance par le groupe de Weyl, groupe fini, qui ne jouera aucun rôle ici); d'où par transposition un isomorphime :

$$\gamma' = {}^{\mathrm{t}}\gamma^{-1} : \mathcal{D}_{\mathrm{K}}(G) \rightarrow \mathcal{D}_{\mathrm{W}}(A_{+}).$$

Si f $\in \mathcal{D}_K(G)$ et P \in Z(G), alors Pf $\in \mathcal{D}_K(G)$, et la relation (4) donne alors

$$\gamma(Pf) = \gamma(P)\gamma(f),$$

avec $\gamma(P) \in D(A_+)$. L'application $\gamma: Z(G) \to D(A_+)$ est un homomorphisme d'algèbres.

Pour une distribution T $\in \mathfrak{D}_{K}(G)$, on trouve

$$\gamma'(PT) = \gamma'(P)\gamma'(T)$$

si on pose $\gamma'(P) = {}^t(\gamma({}^tP))$. Ici l'opérateur bi-invariant sur G est ramené à un opérateur (bi-) invariant sur A_+ , i.e. à coefficients constants sur \mathbb{R}^m ; c'est la méthode utilisée dans [5].

Proposition 3: Soit $P \in Z(G)$. Si $P \mathcal{D}'(G) \supset \mathcal{D}(G)$ (résolubilité globale), ou si P a une paramétrix, alors nécessairement $\gamma'(P) \neq 0$.

Remarque : Comme A₊ est isomorphe à \mathbb{R}^m , la propriété $\gamma'(P) \neq 0$ équivaut à l'existence d'une solution élémentaire pour $\gamma'(P)$.

 $\begin{array}{lll} \underline{\text{D\'emonstration}} & : & \text{Il suffit de supposer que P \mathcal{D}'(G)} \supset \mathscr{D}_{K}(G), \text{ alors P \mathcal{D}'}_{K}(G) \supset \mathscr{D}_{K}(G) & \text{(on peut rendre bi-invariante la solution)}. \\ & \text{Appliquons γ':} \end{array}$

$$\gamma'(P) \mathcal{D}'_{W}(A_{+}) \supset \gamma' \mathcal{D}'_{K}(G)$$
;

l'espace du second membre n'est pas $\{0\}$, donc $\gamma'(P) \neq 0$. D'autre part si P a une paramétrix $E \in \mathcal{D}'(G)$, on a PE - $\delta \in C^{\infty}(G)$, d'où, en rendant bi-invariant, $PE_K - \delta_K \in C_K^{\infty}(G)$. Appliquons γ' ; si $\gamma'(P) = 0$, il reste $\gamma'(\delta_K) \in \gamma'(C_K^{\infty}(G))$, donc $\delta_K \in C_K^{\infty}(G)$, ce qui est faux.

Exemple : Soit $C' = \sum_{i=1}^{n} Y_i X_j$, avec les notations de la fin du paragraphe précédent. On a $C' \in Z(G)$; C et C' sont respectivement partie réelle et imaginaire de l'opérateur de Casimir du groupe complexe G. Comme les X_j sont des dérivations dans les directions de K, C'T = 0 pour toute distribution bi-invariante T, $d'où \gamma'(C') = 0$.

Pour tout polynôme $\overline{\prod}$, l'opérateur $\overline{\prod}(C') \in Z(G)$ n'a donc pas de solution élémentaire ni même de paramétrix, et n'est pas globalement résoluble (mais il l'est localement); il n'a pas non plus d'indice comme opérateur sur $C^\infty(G)$: son noyau contient $C^\infty_K(G)$, et son image ne rencontre pas $C^\infty_K(G)$ sauf en 0.

Notons enfin que la condition suffisante " β '(P) a une solution élémentaire" du paragraphe 3 implique la condition nécessaire " γ '(P) \neq 0" du paragraphe 4, mais qu'elle ne sont pas équivalentes.

BIBLIO GRAPHIE

- A. Cerezo et F. Rouvière:
- [1] Solution élémentaire d'un opérateur différentiel invariant à gauche sur un groupe de Lie compact, Annales E. N. S., 1969, p.561-581.
- [2] Résolubilité locale d'un opérateur différentiel invariant du premier ordre, Annales E. N. S., 1971, p.21-30.
- [3] Sur certains opérateurs différentiels invariants du groupe hyperbolique, Annales E. N. S., 1972.

Harish-Chandra

[4] The Plancherel formula for complex semi-simple Lie groups, Trans. Amer. Math. Soc., 1954, p.485-528.

S. Helgason

- [5] Fundamental solutions of invariant differential operators on symmetric spaces, Am. J. Math., 1964, p. 565-601.
- [6] Paley-Wiener theorems and surjectivity of invariant differential operators on symmetric spaces and Lie groups, à paraître.

M. Rais

[7] Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent, C. R. Acad. Sc., Paris, 1971, p.495-498.

F. Trêves

[8] Linear partial differential equations with constant coefficients, Gordon and Breach, 1966.