SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

M. S. BAOUENDI J. Sjöstrand

Non hypoellipticité d'opérateurs elliptiques singuliers

Séminaire Équations aux dérivées partielles (Polytechnique) (1975-1976), exp. nº 24, p. 1-7

http://www.numdam.org/item?id=SEDP 1975-1976 A25 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1975-1976, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91120 PALAISEAU
Téléphone : 941.81.60 - Poste N°
Télex : ECOLEX 69 15 96 Γ

SEMINAIRE GOULAOUIC-SCHWARTZ 1975-1976

NON HYPOELLIPTICITE D'OPERATEURS
ELLIPTIQUES SINGULIERS

par M. S. BAOUENDI et J. SJÖSTRAND

Exposé n° XXIV

INTRODUCTION

On considère un opérateur différentiel défini dans ${\rm I\!R}^n$ de la forme

(1)
$$P_{o}(x,D) = \frac{\sum_{|\alpha|=m}^{\infty} a_{\alpha}(x) D^{\alpha}}{|\alpha|=m}$$

où a est un polynôme de n variables homogènes de degré $|\alpha|$. On suppose que P_0 est elliptique en dehors de l'origine dans \mathbb{R}^n . On considère ensuite un opérateur différentiel P défini dans un voisinage de l'origine dans \mathbb{R}^n de la forme

(2)
$$P(x,D) = P_0(x,D) + \sum_{|\alpha| \leq m} a_{\alpha}'(x)D^{\alpha}$$

où les a' sont des fonctions de classe C définies au voisinage de l'origine et s'annulant à l'origine au moins à l'ordre $|\alpha|+1$.

Le but de cet exposé est de démontrer que sous l'hypothèse (H) (voir plus loin) l'opérateur P donné par (2) ne peut être hypoelliptique dans aucun voisinage de l'origine. Plus précisément on a (toujours sous l'hypothèse H)

Théorème 1 : On peut trouver V, voisinage ouvert de l'origine, et $T \in \mathcal{O}_{!}(V)$ vérifiant :

supp sing
$$T = \{0\}$$

 $\operatorname{pT} \in \operatorname{C}^{\infty}(V)$ et plate à l'origine.

Théorème 2 : On peut trouver V, voisinage ouvert de l'origine, tel que pour tout $k \in I\!\!N$. il existe $f \in C^k(V)$ vérifiant

supp sing
$$f = \{0\}$$

Pf $\in C^{\infty}(V)$.

La démonstration de ces théorèmes est basée sur la construction explicite des singularités des solutions. On note que la même méthode pourrait être utilisée à construire des singularités de la solution du problème de Dirichlet dans un domaine conique (travail à paraître ultérieurement) et semblables à celles de [3].

Le théorème 1 a été d'abord démontré dans le cas d'un exemple particulier dans [2], ensuite, avec P réduit à P (i.e. $a'_{\alpha} = 0$) dans [1] et exposé l'an dernier dans ce séminaire.

L'HYPOTHESE (H) (voir aussi [1]).

En coordonnées polaires $(x = r\theta, r > 0, \theta \in S_{n-1})$ Pos'écrit

$$\mathbf{Q}_{o}(\theta\,,\mathbf{D}_{\theta}\,,\mathbf{r}\,\mathbf{D}_{\mathbf{r}}) \;=\; \sum_{j=o}^{m} \;\mathbf{A}_{j}(\theta\,,\mathbf{D}_{\theta})\,(\mathbf{r}\frac{\partial}{\partial\,\mathbf{r}})^{m-j} \quad . \label{eq:Qo}$$

On pose, pour $(\theta\,,\xi\,)\,\in\,T^{\theta}\,S_{n-1}^{}$ et $\xi\in{\rm I\!R}$

$$q_{o}(\theta, \eta, \xi) = \sum_{j=0}^{m} a_{j}(\theta, \eta)(i\xi)^{m-j}$$

où a est le symbole principal d'ordre j de A_j . On note

$$\begin{split} &\Gamma = \{ \mathbf{z} \in \mathbf{C} \mid \exists (\theta, \mathbb{I}) \in \mathbf{T}^{\mathsf{H}} \mathbf{S}_{\mathbf{n-1}} \setminus \mathbf{0} , \mathbf{q}_{\mathbf{0}}(\theta, \mathbb{I}, -\mathbf{i}\mathbf{z}) = \mathbf{0} \} \\ &\Gamma_{\perp} = \Gamma \cap \{ \mathbf{z} \in \mathbf{C}, \operatorname{Re} \mathbf{z} > \mathbf{0} \} . \end{split}$$

On suppose

(H)
$$\begin{cases} \text{II existe } \theta_{0}, \ \theta_{1}, \dots, \theta_{\ell} \text{ satisfaisant} \\ -\frac{\pi}{2} < \theta_{0} < \theta_{1} < \dots < \theta_{\ell} < \frac{\pi}{2} \\ \theta_{j+1} - \theta_{j} < \frac{\pi}{n-1} \text{ pour } j = 0, \dots, \ell-1 \\ \Gamma_{+} \subset \bigcup_{j=0}^{\ell-1} \{z \in \mathfrak{C} \mid \theta_{j} < \arg z < \theta_{j+1} \} \end{cases}$$

LEMMES TECHNIQUES

Pour $z \in C$, on note S_0^z l'espace des fonctions définies dans \mathbb{R}^n - $\{0\}$ s'écrivant comme sommes finies de la forme

$$\sum_{\ell} \mathbf{r}^{\mathbf{Z}} (\log \mathbf{r})^{\ell} \mathbf{v}_{\ell} (\theta)$$

avec $v_{\ell} \in C^{\infty}(S_{n-1})$. Il est clair que P_0 opère dans S_0^z pour tout $z \in C$. On a :

(4)
$$(\frac{\partial}{\partial \mathbf{r}} - \mathcal{L}(\theta, \mathbf{D}_{\theta})) \mathbf{F} = \mathbf{G}$$

où F et G ont m composantes et la matrice \mathcal{T} est un pseudo-différentiel elliptique d'ordre 1. Si $a(\theta,\mathbb{N})$ est son symbole principal on a

$$\det(z - a(\theta, \eta)) = q_0(\theta, \eta, -iz)a_0(\theta)^{-1}.$$

Il est alors facile de voir qu'il suffira de pouvoir résoudre dans \mathbb{R}^n - $\{0\}$ l'équation (4) avec $G = r^2(\log r)^k V$ avec $V \in (C^\infty(S_{n-1}))^m$ et $k \in \mathbb{N}$.

La compacité du domaine de ... dans $L^2(S_{n-1})^m$ montre qu'il existe $N_z \in {I\!\!N}$ vérifiant

$$\operatorname{Im}(z-z')^{N_{z}} \oplus \ker(z-z')^{N_{z}} = L^{2}(S_{n-1})^{m}$$
.

L'équation

$$(\frac{\partial}{\partial \mathbf{r}} - \mathcal{L})\mathbf{F} = \mathbf{r}^{\mathbf{Z}}(\operatorname{Log} \mathbf{r})^{\mathbf{k}} \mathbf{V}(\theta)$$

admet alors une solution dans \mathbb{R}^{n} - $\{0\}$ de la forme

$$\sum_{\ell=0}^{k+N} z^{2} \left(\log r \right)^{\ell} V_{\ell} (\theta)$$

avec $V_{\ell} \in (C^{\infty}(S_{n-1}))^{m}$.

Pour le voir, on fait une récurrence sur k. On suppose ce résultat vrai jusqu'à k-1 et on le démontre pour k. On écrit

$$V = V_1 + V_2$$

avec $V_1 \in Im(z-\cancel{z})^{N_z}$ et $V_2 \in ker(z-\cancel{z})^{N_z}$. On vérifie aisément que

$$F_2 = \sum_{j=0}^{N_z} \frac{k! (-1)^{j+1}}{(j+k)!} r^z (\log r)^{k+j} (z-1) V_2$$

est une solution de (4) avec $G = r^3 (\log r)^k V_2$. On écrit $V_1 = (z - 2) U_1$, on obtient

$$(r\frac{\partial}{\partial r} - z) r^{z} (\log r)^{k} U_{1} = r^{z} (\log r)^{k} V_{1} + k (\log r)^{k-1} U_{1}$$
,

il suffit maintenant d'appliquer l'hypothèse de récurrence pour k-1. cqfd.

On note maintenant $S^{\mathbf{Z}}$ l'espace des séries formelles de la forme

$$\sum_{k=0}^{\infty} v_k \quad \text{avec } v_k \in S_0^{z+k}$$

et
$$S^{-\infty} = \bigcup_{z \in \mathbf{C}} S^z$$
.

Le développement en série de Taylor à l'origine des coefficients de P montre que P opère (formellement) dans S^Z pour tout $z \in \mathbb{C}$ (et donc dans $S^{-\infty}$). Le lemme 1 montre que P_0 admet un inverse à droite dans S^Z , et donc dans $S^{-\infty}$. On note E_0 son inverse à droite dans $S^{-\infty}$.

 $\left\lfloor \frac{\text{Lemme 2}}{\text{S}^{Z}} \right\rfloor$: L'opérateur P admet un inverse à droite E dans S. E envoie $\left\lfloor \frac{\text{S}^{Z}}{\text{S}^{Z}} \right\rfloor$ pour tout z.

Démonstration : On a dans $S^{-\infty}$

$$PE_{o} = I - (P_{o} - P)E_{o}$$

Comme $(P_0 - P)E_0$ envoie S^Z dans S^{Z+1} pour tout z, il suffira de prendre

$$E = \sum_{k=0}^{\infty} E_0((P_0 - P)E_0)^k.$$

Remarque 1 : Si \circlearrowleft est un ouvert de ${\rm I\!R}^n$ contenant l'origine et ${\rm k} \in {\rm I\!N}$, on note $C_p^k(\circlearrowleft)$ l'espace des fonctions f de $C_p^k(\circlearrowleft)$ vérifiant ${\rm D}^\alpha {\rm f}(0) = 0$ pour $|\alpha| \le k$. Il est facile de voir que, par un procédé à la Borel, si ${\rm v} = \sum\limits_{k=0}^\infty {\rm v}_k \in {\rm S}^z({\rm v}_k \in {\rm S}_0^{z+k})$, il existe $\widetilde{\rm v} \in {\rm C}^\infty({\rm I\!R}^n - \{0\})$ unique modulo ${\rm C}_p^\infty({\rm I\!R}^n)$ telle que, pour tous N et k vérifiant k < Re z + N, on ait

$$\widetilde{\mathbf{v}} - \sum_{k=0}^{N-1} \mathbf{v}_k \in \mathbf{c}_p^k(\mathbf{R}^n).$$

<u>Démonstration du théorème 1</u>: En utilisant (H) (voir [1]) on peut trouver $z_0 \in \mathbb{C}$, Re $z_0 < 0$ et z_0 valeur propre de \mathscr{X} . On en déduit qu'il existe $u_0 \in C^{\infty}(S_{n-1})$, $u_0 \neq 0$ et vérifiant

$$P_0 = r^2 o_0 = 0 \text{ dans } \mathbb{R}^n - \{0\}$$
.

On pose (E étant donné par le lemme 2) :

$$v = r^{z_0} u_0 - E P r^{z_0} u_0.$$

Comme $\Pr^{z_{o}} u_{o} \in S^{z_{o}+1}$, on a

$$v \in S^{z_0}$$
, $v \not\in S^{z_0+1}$ et $Pv = 0$.

Il résulte alors que, si \hat{v} est la fonction de $C^{\infty}(\mathbb{R}^n\setminus\{0\})$ associée à v par la remarque 1, on a

$$\mathbf{P}\widetilde{\mathbf{w}} \in C_{\mathbf{p}}^{\infty}(\mathbf{R}^n)$$
 (calculée dans $\mathbf{R}^n - \{0\}$).

Si $\widetilde{\widetilde{w}} \in \widetilde{\mathcal{V}}'$ (\mathbb{R}^n) est un prolongement de \widetilde{w} à \mathbb{R}^n on a :

supp sing $\widetilde{w} = \{0\}$ (vu le choix de z₀)

(5)
$$P_{\mathbf{w}}^{\approx} = \sum_{|\alpha| \leq k} c_{\alpha} \delta^{(\alpha)} \pmod{\mathbb{C}_{p}^{\infty}(\mathbb{R}^{n})}.$$

Comme P est un opérateur linéaire dans l'espace de dimension finie formé des distributions de la forme $\sum_{|\alpha| \le k} d_{\alpha} \delta^{(\alpha)}$ (k fixé, $d_{\alpha} \in \mathfrak{C}$). On conclut

aisément de (5), que l'on peut trouver une distribution T satisfaisant les conclusions du théorème 1.

<u>Démonstration du théorème 2</u>: Soit $k \in \mathbb{N}$ (que l'on peut supposer assez grand). Comme dans [1], il existe une valeur propre z_0 de \mathcal{X} vérifiant Re $z_0 > k$. On en déduit alors qu'il existe $u_0 \in C^{\infty}(S_{n-1})$ $u_0 \neq 0$ et vérifiant fiant

(6)
$$P_0 r^{z_0} u_0 = 0 \quad \text{dans } \mathbb{R}^n - \{0\},$$

et donc aussi dans \mathbb{R}^n (car Re $z_0 > k$). Deux cas sont alors possibles :

- i) <u>La fonction</u> r²ou n'est pas un polynôme homogène. On conlut alors comme dans la démonstration du théorème 1 (c'est même plus simple, il n'y a pas ici de masses de Dirac).
- ii) <u>La fonction</u> r^{2} u_{0} <u>est un polynôme homogène</u> (<u>degré</u> z_{0}). Soit alors ℓ^{2} l'espace des polynômes homogènes dans ℓ^{2} de degré z_{0} . ℓ^{2} opère dans ℓ^{2} ; il n'est pas injectif (à cause de (6)); il n'est donc pas surjectif. Soit r^{0} $v_{0} \in \ell^{2}$ \quad \text{Im } ℓ^{2} \quad

pas dans $^{\circ}_{z_{0}}$, il admet donc un prolongement dans $^{ck}(\mathbf{R}^{n})$ qui n'est pas $^{\infty}_{c}$. Il en est donc de même de $^{e}_{z_{0}}$; mais on a

$$P E(r^{o}v_{o}) = r^{o}v_{o} \text{ mod. } C_{p}^{\infty}$$
.

Ce qui donne la solution désirée.

BIBLIOGRAPHIE

- [1] M. S. Baouendi et J. Sjöstrand : Régularité analytique pour des opérateurs elliptiques singuliers en un point. Arkiv för Mat. 14 (1976) p. 9-33.
- M. S. Baouendi, C. Goulaouic, L. J. Lipkin : On the operator $\Delta r^2 + \mu r \frac{\partial}{\partial r} + \lambda$. J. Diff. Equ. 15 (1974) p. 499-509.
- Kondratiev: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Mosk. Mat. Obch 16 (1967) p. 209-292 (Transactions Moscow Mat. Soc. (1967) p.227-313).