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General Cauchy Formulas in tCn

by

N. Aronszajn

Introduction.

Let K(x, t), x = (xl, ... , xn), t = (tl’ a tn) be a holomorphic

function (possibly multi-valued) in X «;n. We will say that K is a

Cauchy kernel if there exists a non-empty domain DC ~~‘, an n-cycle

E’c T , and a holomorphic function C(x), regular and non-vanishing

in D such that for any function f holomorphic and regular in a domain

f"    we have

for every x ~ D . (1), as it stands, is not yet quite right, in general.

In § 1 we will indicate the exact changes and conditions under which the

right hand expression is meaningful. The classical Cauchy formula

corresponds to K (x, t) t -1 t- 1 t -n The author proved (1) a feB, y e a r,:-corresponds to K(xt) t 1 1 t-l... 2 t n n , . The author proved (1) a few year-

ago for the kernel K(x, t) = (tz .+t 2)- n/?. in connection with his study. I n

of polyharmonic functions and Almansi expansions. This gave rise to then

general theory which is presented here.

There are some other Cauchy formulas. For instance, those introduced

by S. Bergman [5] and by A. W eil [10 ] in the early thirties. More recentl.y, in the

late fifties, J. Leray [8] introduced the Cauchy-Fantappie formulas, based on results

of L. Fantappi (see [b] and [7]). These formulas are of different type than ours,

and the difference, we believe, can be explained bcst in the following wa .y. The a bùvt’

mentioned authors aimed at defining domains D such that functions, holomorphic

on D, can be represented by (1) with some kernel K and some cycle r.

In the formulas of Bergman and Weil, the kernel K is not holomorphic on

the whole of F, is only piecewise holomorphic ~i. e. , I is represented bB.
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different holomorphic kernels on different portions of F). In the Cauchy-
,

Fantappie formulas the kernel K is actually holomorphic on the whole of

F, but is given by an integral, not directly. In our concept

of (1) we consider an explicitly given kernel K, find for it a suitable cycle

r which determines the function C(x), and then find the corresponding

domain D/

As illustration of the advantage of our approach, we prove, in § 5,

the existence of Almansi expansions for arbitrary functions, holomorphic

around the origin.

Our main problem will be to characterize the Cauchy kernels, and

if K is a Cauchy kernel, to find explicitly, if possible, a corresponding

r, D and C(x).

After some preliminaries in § l, we give, in Theorem I, § 2, a general

necessary condition for K to be a Cauchy kernel. Theorem II shows that

this condition is also sufficient for the important class of kernels which

are homogeneous in the variables t . However, for general kernels K,

we can get only sufficient conditions, which possibly are not far from

necessary and sufficient (see §3).

The criterion that a kernel homogeneous in t be Cauchy is that the

exterior differential form, K(x, t)dtil not be a differential on

the Weierstrassian manifold M in variables t of K(x,t) for some fixed

x . It is proved that this criterion implies that K is homogeneous of degree

-n . It is, in general, far from trivial to decide if the form Kdt IA . - Adt
is a differential or not, even if K is homogeneous of degree -n in t .

according to de Rham’s theorem, this is equivalent to showing that for some

n-cycle, the integral of the form is / 0 , Actually, this cycle determines

1) We usually look for the largest domain for which the formula is valid.
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a cycle 1 in the corresponding Cauchy formula.

In § 4 we show how to define explicitly such a cycle for certain classes

of kernels. We construct also a cycle for certain kernels which are not in

the classes just mentioned; this construction stresses the difficulty of

finding a corresponding cycle for homogeneous kernels in general.

In § 5, for certain restricted kinds of kernels, we obtain the

corresponding Almansi development for an arbitrary holomorphic function.
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§1. Preliminary definitions, notations and properties.

For an arbitrary holomorphic function F(z) (in general, multi-

valued), z E (C , we define the corresponding Weierstrassian manifold

S of Taylor developments which can be obtained by analytic continuation

from one another, and which form a holomorphic manifold over (E

The complete holomorphic multi-valued function F(z) becomes then

a single-valued function F(z), z E , The projection of z on 

is given by the center of the Taylor development z. For 

.,

there exists a small neighborhood, on which the projection is
,,

an injection. Any domain U on which the projection is an injection

determines a single-valued branch of the multi-valued function F, J

1B

defined on the p rejection U of U .

The kernel K(x, t) considered here is a function of 2n-variables

x, t), Hence, it defines a Weierstrassian maniiJld % over n X C .

Also, the kernel K~x, y-x) as a function of variables x and y defines

a Weierstrassian manifold over (Cn X The two rnanifolds are

isomorphic, the isomorphism being completely described by the following

properties: if z 6 IR and ’ 6 TK’, and if the projections of z and 2’ are

~x, t) and (x’,y ), then z’ is the isomorphic image of 2 if x’ = x,

y = x + t and the value of the function K(x, t) at z is the same as the

value of the function K(x, y -x) at zB

Consider now a fixed point, x E E . K(x,t) represents then a holo-

morphic function of t (possibly several of them). On the other hand, the

set of points in m which project on points of the form (x, t) can be written

in the form (x,3Jl ) where 3Jl is a holomorphic manifold over (tn, in
x x,

general disconnected, whose components are isomorphic to the Weierstrassian

manifolds corresponding to the functions of t given by K(x, t), each of
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these manifolds being isomorphic to one or possibly several components

of Similarly, we define, the manifold Mll wi th the same
x x

remark, relating it to the Weierstrassian manifold corresponding to the

functions of y, given by K(x, y-x).

We will as s ume that the cycle T , which is independent of x , is the

~1

projection of a well-determined connected n-cycle r(x) c!JJ1’ (and, therefore,
A 

x
’ 

/B

depending on x). Since r(x) is connected, it lies in a well-determined

component of Mll x which corresponds to a well-determined function of y,

given by K(x, y-x). It is clear now that if we write (1) in the form:

the condition makes the formula meaningful (even though it

is not always true). ,

A A
If r(x), for every x E D, lies in a domain I which determines

a branch of K(x, y-x), then (1) has a meaning in its original form.

The isomorphism between and ~t transforms MI x I onto 9 x
1B

and hence r(x) is transformed on a well-determined cycle in MI x which

A

can be denoted for obvious reasons as r(x)-x. Its. projection is F-x .

By a change of variables we can write (1.1) in the equivalent form:

Denoting f(x + t) by cpx(t) we get, finally, (1.1~ in the form in which we

will prove it under certain conditions on K(x, t):
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We pass now to holomorphic exterior differential forms on a holo-

morphic manifold over ~n. Specifically, we will consider the manifolds

IR . We can take on JR , as local coordinates, J tl , ... , tn , t1’ ... , t . n
The exterior differential forms, which are expressed only in terms of

wedge-products of dtk with coeficients holomorphic on some domain x

are called holomorphic in V .

A holomorphic differential form of order n has necessarily a vanishing
n

differential (i. e. , it is closed). For such a form I for two homologous n-cycles
ll, , (m 

’

I, and F 2 by Stokes Theorem, we 
.,

T""" T""’B

-1 ’ 2 

By the general deRham’s theorem, a holomorphic form of order

..... 

« ,k is a differential if and only if, for every k-cycle F in its doniain, j 4J = o.
1
1

In our main Th eorem II ( § 2) we will assume that the kernel K(x, t)

is homogeneous in t of certain order m (independent of x). Under this

assumption, the manifold -U x has the prope rty that the homothetie operator

t-i rt, for any positive r , can be lifted in a unique way f rom 

whenever t is a projection of an element in lll x . This remark will be

used in our proofs.
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§ 2. Main Theorems.

Theorem I. A necessary condition for K(x, t) to be a Cauchy kernel

for x beionging to a domain D C T n is that for no x E D, K(x, t&#x3E;dti ... ~I dt
be a diff e rential on .x

The proof is immediate :,ince, otherwise, for f(x) = 1, i. e. , q x (t) = 1,

the right-hand of formula (1.1") would give 0 instead of 1 ,

The next theorem shows that the above necessary condition is actually

sufficient for a large and important class of kernels.

Theorem II. Let K(x, t) be homogeneous in variables t of de ree

m independent of x . If, for some Xo ill is not empty, and the form

I t)dt1A. is not a diffe rential 
t 

then K(x, t) is a CauchyU 1 n 
’ 

0 
kernel, m= -n, and, for any convex domain we can choo s e the

A

n-cycle r(x) so that its projection r be on the boundary 8G .

Proof. Since t) is not a differential on , 0 by de Rham’s2013201320132013 
" 

A 0
theorem there exists a cycle fl on MIx such that

n A.

We remark first that for r &#x3E; 0, r ri is homologous to 11 on TI x0 .

Hence, by change of variables

It follows that m + n = 0, and
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As a consequence, the projection of ill x for every x, does not contain 0.
n

The convex domain G-x contains 0. For every t E F there exists

/~ A n

a unique r(t) &#x3E; 0, such that where t is the projection of t.

o. 
(A)^% 
.. 

b. ‘ 
..

The points rt)t are obviously describing an n-cj,cle which is

, 

1 

0
homologous to Il Therefore,i 0 

’ 

A a

We will consider that II is already chosen as the and we will have
A

for the projection 11 of fi

1B

By the isomorphism of t the cycle  1 is transformed onto

B
the cycle 

0 
such that

’‘
Since 1’(x0) is compact, there exists a small neighborhood U of 0

n A .

in such that for every point y E I’ (x0) with projection y, there is a

A ~B A

unique neighborhood of (xo 8 Y) on :’ I which projects injectivel‘·

on (U 0 + x0) x (U 0+ y). We will assume that U 0C 
A A

It follows that for each x E U0 + x0 and each y E T(x0 there exist

a unique point y(x) E such that proj. Y(x) = proj, I and (x, 9(x)) E 
A .. 

A ^ 
..

For y describing the cycle F(x 0 y(x) describes a cycle r(x) in 

By continuity and in view of ( 2.1), we can CIIOOSe U0 s o s mall that,

for x-x 0 E U0.1
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Using again the isomorphism between and TI, J we have to prove

the Cauchy formula in the form (1. 1ft) where

We Will assume that the function f(x) is regular in a domain D f containing 

and all the closed segments joining x with points of r for every x E U 0+ x~ .
Consequently, for every x E U 0 + Xo J is regular in a domain of t

containing all the closed segments joining 0 with points of T-x.

We use now a classical argument to prove the formula (1.1"), We

A A

notice again that r(r(x)-x) is homologous to r(x)-x for every r &#x3E; 0 and

we write

For r’~ 0, (p (rt) converges uniformly to T x(0) and we obtain in the limit

(1, lf’) for x ~ U 0 + x0
Let us now come back to (!..1). Consider all the paths x(s) in T n

/B "

such that, for every there exists a

path (x(s),~(s)) on starting with (x( 0) ,~), the projection of each
1B

y(s) being y . It is then clear that every function f(x) represented by

the Cauchy formula in a neighborhood of x 0 will have an analytic continuation

along the path x(s), and along each such path still will be represented by-

the Cauchy formula. All the paths x(s) will describe a multiply covered
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A
domain D (a manifold over ([11) on which the, in general, multiple-

valued function f will be single-valued. Tl1c manifold D is the natural

domain of validity of the Cauchy formula. If we want a domain D for the

Cauchy formula satisfying the requirements stated in the introduction.

we can choose a maximal domain D in containing xo’ 1 such that:

19 every open segment joining a point in D with a point of F lies

in D,

20 for any path x(s), 0 ~ s # sl, joining in D x, x(O) with x( s ~ ) ,
A ~B

and for any y E there exists a corresponding path (x(s), y(s)) in

- . 
,, ,, , A A

with y(0)= y and proj. y(s) = proj. y , such that depends only

on x(sii and not on the choice of the path x(s).

The beginning part of the proof of Theorem II gives the following

useful lemma: 
’

Lemma. If K(x,t) is homogeneous ir. t of degree / -n, then the

form K(x, ...1B dt is a differential oii 7.91x. .
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§3. Sufficient conditions for general kernels K(x, t).

For kernels K(x, t) which are not homogeneous in t, the condition

of Theorem I is not, in general, sufficient. As a simple example, we can take

the kernel K(x, t) = K(t) =20132013 + 1 for t (C 2’

In the next two theorems we will give sufficient conditions in order

that K(x, t) be a Ca uchy kernel. In the first, the conditions will be weaker,

but, in general, rather difficult to verify. In the second the condition will be

essentially stronger, but easier to verify.

Theorem III. The kernel K(x, t) is a Cauchy kernel with cycle
At. 

r(x) c and domain D c if

1. o for every x ~ D

o 
/x

2. For every x E D there exist a sequence of n-cycles 
A ~ A ~B

and (n+1) -chains Ak c k = 1, 2, ... such that 8 (A~) = (F(x) -x) -F~(;),
A A

proj. and maximal distance from proj. r k(x) to 0 converges

to 0 for 

Proof. The argument is modeled on the basic elements of the proof of

Theorem II. For cp x ~t) regular in a domain containing (D-x) U (F-x), the

n
exterior differential form is defined on Ak . Hence,

x in i
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The first integral in the last term gives q) (0), whereas the last integral,

in view of 30 and the last condition in 20, converges to 0. Hence, (1.1").

’~ 
Theorem IV. K(x, t) is a Cauchy kernel with domain and

a

cycle F(x) for x E D if

1B

, 

1. proj’ r(x) every open segment joining 

with y E r is contained in D. ,

~ 

o _ , 00

2. For every x E D, and t E r(x)-x, where
0

K (x, t) is homogeneous in t of degree mi , mo 
= -n. m  m

A A

the series converging uniformly in x E D and t E r(x)-x, the kernel
’ 

A

K 0(x,, t) being a Cauchy kernel relative to D and f(x).

Proof. We have

Since mt 
&#x3E; -n for 4 &#x3E; 0, by the lemma of § 2 this series reduces to

.,

We can put

Since, for x E D, cp x (t) is regular on (D-x) U (T’-x~, we can write

for every r with 0  r  1 . We take r small enough so that r(r-x) is
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contained in a ball S with center 0 such that Yc D-x . For t E-:B and
00

x in any compact contained in D, cpx(t) = E pk(t) where Pk(t) are
~ 

k=0 
" "

homogeneous polynomials of degree k (with coefficients depending on x),

the series converging absolutely and uniformly. Therefore,

t) is homogeneous in t of degree mt + k, hence the degree

is greater than -n, except when 4 = k = 0 . Again by the lemma of § 2 ,

all the terms of the last series are 0 except when ~ = k = 0 , We get,

therefore, that

and (I. 1") is proved.

As illustration of the last theorem, consider the case when K(xJ t)

is a meromorphic function in the whole space (E X (Cn of the form

K(x, t) = F and G being entire functions of the form
» 

oo

are entire in x and homogeneous polynomials in t of degree k.

Let now be a Cauchy kernel relative to D and r(x), Then
n A

taking any point D and replacing D and r(x) by x 0 + r(D-x0) and

x + r(r(x) -x), we will obtain, for r sufficiently small, a s uitable development

by using the development of
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§4. Construction of cycles for certain classes of kernels.

If we restrict ourselves to kernels K(x,t) homogeous in t, then

by Theorem II and its proof, we notice that it will be enough to find such

a cycle for a kernel K(xOl t) with fixed I i. e. , for a kernel K(t)

independent of x. In this case all the Jfl x coincide. We will denote

them by 52 . 0 TI is then simply 
° 

A 0 
The construction of a cycle r 1 r- Ti 0 for dtn/ 0,

§

11
i. e. , a cycle which shows that K(t) is not a differential, and which will

figure in the corresponding Cauchy formula, is, in general, not a trivial

task. We are going to mention first two simple cases where such a con-

struction is available:

Casel). Suppose that the variables ti ... tn are divided in k con-

secutive groups, t,...,t , l’"--’-,+., ""..’ ,secutive 
groups, 

ti,,... 1 î 2 
I.. 

lot 1 v k-ll1 
.1 ... 

It 
° 

’k
with i~ +... +tk = n . Denote by the point in whose coordinates

are the variables of the j " group. If then we have, for each j = 1, ... , k,

a homogeneous kernel K (t of degree which we have a corresponding

cycle r J in the corresponding manifold 3!. , then the product 

will have for corresponding cycle the product cycle x XL .

That is how the product of circumferences is obtained as a cycle corresponding

to K(t) = £ ... 0 . ’ ’t o K (t) = t ... t .
1 n

Case 2). Let K(t) be a homogeneous kernel with corresponding cycle
A n n

and let L be a linear mapping of (C onto T, n. Then K(Lt) is a homo-

geneous kernel with corresponding cycle 

1) However, will not coincide for different x’s. .

2) ’ We use here the well-determined lifting of the mapping L -1 to the manifold

mi.
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Remark 1. If we have a kernel K(t) which is not homogeneous,
. 

n 
. 

and for which we have a cycle r 1 0, then
- 

n

n

f1
for any holomorphic homeomorphism of (E onto (Cn, we will have,

obviously, dtn o , What is more, it can be proved
1

L 1 
1

without great difficulty that if K(t) is a Cauchy kernel’, then so is also

K(Lt).

The next theoreni defines a large class of homogeneous kernels for

which we can explicitly construct a corresponding cycle.

Theorem V. Let K(t) be a homogeneous kernel of degree -n for

which there exists a branch with domain containin IRnB (0) such that

n 

K(x) &#x3E; 0 for Then, for every R &#x3E; 0, we get a cycle F
- I

corresponding to K(t), if we consider the n-cycle x S1 3) and defineP g () y R I
. A 

b 
i8 

E 
n-1 

d 0 : 9 : 2points of --1 by xe , x E SR and 0 =. 9 2n .2013 xe ,x jB 20132013 ::; -=- TT.

Proof. We have to show that

We consider the x -axis in IRn as vertical and divide the sphere Sn-1
n R

into lower and upper half-spheres for which 0 or ’-- 0 respectively.

For the two half -spheres we will use local roordinates T 1, ... , s uch

that T 2+ ... +T 2 ‘-- 1. Then the points of the lower (or upper) half-sphere1 n-1 
_

will be given by x - Ri n-1 72 n-1 (or

x = R T I., R-r I 
... )). ° The natural orientation of IR n-1

is the sphere of radius r in IRk -1 with center 0.
R
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of variables I ... ,T gives then the orientation of on the lower

half-sphere and gives the opposite orientation to the one of S on thepp R

upper half-sphere. It follows that when using the coordinates ‘1 
in the integration, we will have to multiply by -1 the integral over the upper

half-sphere. We can now write:

the sign - in t n being for the lower half-sphere, and + for the upper one.

We have then

For T = denote by R£ -(T) the corresponding points

of the lower half-sphere, and by the points of the upper half-sphere.
-+ io -n -in-’ + .

Then, for t = Rg (T)e we have Putting

in the left hand of (4.1)~ we get:

By the condition of the theorem , K(~+(T)) &#x3E; 0. Hence (4.1) is proved.
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An interesting example of Theorem V is the case of the kernel

K(t) = (tf +... +t )n/2 which is important for the study of polyharmonicI n

functianls and their Almansi expansions. Another more general case is

given by the following corollary:

Corollary V’. The kernel K(t) = (Q(t))n~2 where
- 4) - - - - -

is a non-degenerate j’ quadratic polynomial with constant complex coefficients,

is a Cauchy. kernel.

Proof. We use here a classical algebraic theorem which say that

if Q (t) = tz +t 2 . then there exists a linear homeomorphism L such0 1 n 
p

that Q(t) = Q(Lt), and we appl)r Case 2) from the beginning of the present
section. 

’

The two simple constructions given at the beginning of this section,

together with the class of kernels defined in Theorem V, allow us to construct

explicitly, cycles corresponding to a large class of kernels. However, for

all the homogeneous kernels K(t) outside of this clas s, we do not know

of any explicit’ construction of a corresponding cycle, i. e. , of any explicit

way of checking if the form dtn is a differential

r-Oon -)-it0 . To show the difficulty of this general problem, we will construct

such cycles for certain kernels not belonging to the above mentioned class

where we will have to use very special properties of these kernels.

We will consider kernels of the form

n is even,- these kernels belong to the class defined in Theorem V.

However, when n is odd and ~- 3, they do not belong to the above defined

4) . 
i.e., 0.
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class for which we gave an explicit construction of a corresponding cycle.

For such an n we can proceed as follows: Consider the sphere n-lFor such an n We can Proceed as follows: Consider the sphere 1 ;

we can consider S. I -1 as the union of 2’2 topological simplices 
I- - - - "n1 .. 

with mk 
= 0 or 1, k = 1, ... , n, defined by the local coordinates

T = t’r 1 , ... , 0, r T J ~ 1, by the equation

The orientation of ’ 
m , 

in Sn 1 1 is the orientation g iven b Y the
1 ° ° 1 m n 

representation (4.3), multiplied by the factor Each

P 1111 ’ &#x3E; .. , mn 
is transformed homeornorphically on a topological simplex

Q ml ’ ...,mn = ~C n by the mapping

The orientation of in determines all orientation of

Qml) - - .1 Mn . and with this orientation

becomes a cycle, homeomorphic ’to S?. We put now 
’

~ 

We calculate now K(t)dt A ...A dt . We notice first that
~ 1 n

~ We take the non-negative value.
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Further,

He.nce, multiplying by to return to the orientation of Q, we obtain

It follows

as required.
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§5. Almansi Expansions.

An Almansi expansion of a function f(x) around 0 is a development

where h (x) are harmonic functions in some neighborhood D of 0 and the

development converges uniformly on compacts in D .
~ 

E. Almansi ~1~ constructed such developments for polyharmonic

functions of finite degree (i. e. satisfying 0 for finite m) in a

domain in M. Nicolesco (see [ 9 ) extended this result to IR , n &#x3E; 3.

The author introduced the notion of general polyharmonic functions of

infinite degree (originally under the name of harmonic functions of infinite

order, see [ 2 ] ), and a few years later he was able to prove the existence

of development ( 5.1) for general polyharmonic functions [3 ] . It was only

much later, in the sixties, that the author proved the corresponding Cauchy

formula, which allows us to construct development 5.1) for any function

f(x) holomorphic around the origin in T, n

This result was only mentioned, without proof, in the author’s

preliminary notes to his lecture on "Traces of analytic solutions of the

heat equation", (see [4 ]). We will give here the proof of this result

without insisting on the developments related to the study of poly-

harmonic functions, which make the study of Almansi expansions of

special interest. 
1)

The relevant kernel for the Almansi expansion in

1) The general theory of polyharmonic functions, J with all its ramifications, J will

be presented in a monograph of the Colloquium Publications of the American

Mathematical Society, I which we hope will appear soon.
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Following the construction in Theorem V (§ 4), the corresponding cycle
A

r(x) c ~ can be identified with its projection F , J since it lies in a domain
A 

x R

determining a branch of K. We have

The relevant Cauchy formula is then

where ’ 
*

We would like now to determine the largest domain
A
D s uch that ( 5 . 4 )
A

is valid for all functions f holomorphic in a domain D fDD U F . From
* R

the proof of Theorem II, we know that (5. ) is valid in a domain D’ containing

the origin. Therefore, by analytic continuation, it has to be valid (or give

the analytic continuation of f) at any point which can be joined to zero by

a path x(s) on which / 0 for each x in the path

and each y E We will determine the set of all x’s for which this is not

n fl
true, and will find that the complement of this set in (C is the desired D .

We will need now a lemma which belongs to the theory of polyharmonic

functions. The contents of the lemma are mentioned in [ 4 ] without proof.

Lemma. Let be the ball of radius R and center 0 in 

Let B R be the open set in formed by all the points z E such that

z ’ + and n in ]R with

BR is a circled domain, i. e. , with every point z, it contains all points
~~ 

.. 

z with 6 real. With the above notations, every function h, harmonic

in B is analytically continuable to and B is the largest domain

with the last 
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Proof. To prove that BR is i circled domain, take any J""" * R

and in IRn then ele 8 z = where t; an "In IR J then e z = 
1 

+ 1 w ere l = . -" J

sin 8 + TJ cos 8 . An immediate checking shows that  1 2+ 1 2 - . 2+ 2
which shows that e"z6B R "

Let h be a harmonic function in BR. * We use the Poisson formulaR

for the ball BR with 0  

If we take a path in (Cn. starting with the origin, it is clear from the

formula that h will certainly have an analytic continuation along this path

as long as (xl-Yl)2+... ° not vanish for any x on the path

and any y E S n-I Take the complementary set of such x’s, that

for some y E R1 Sn-1 s Is (x i -Yi ) 
2 
+. - - +(x n-Y ) 

2 
=0. Let andqfor some (x-y+...+(x-y=0. Let x=+i and T1

R 1 
in Then the last equality is equivalent to

The existence of y E for which the last equality in (5. 7) is valid, is
"1

equivalent to the condition:

and the y can be an oint of Sn-1 lying in the hyperplane passing throughY p 
R 1 

y g yp p passing through 
’

~--, and orthogonal to Tl. The first equation in (5.7) can be written

Using the projection

can write:

of ~ on the line of the vector il, we
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Therefore, in order to satisfy, for given x = ~ + iq, the two equalities in

( 5.? ~, y must satisfy, in addition to the preceding conditions, the condition

This last equality can be satisfied if and only if

Developing the extreme terms of this inequality we obtain

This inequality implies, in particular, I ~, ,,1 ~ Hence, (5.8) is

the necessary and sufficient condition for the existence of y E such

22 
1

that (xj-Yj) +... ° = 0 ° The opposite inequality, therefore,

guarantees that there is no such y . The opposite inequality, however,

is equivalent to

Since this condition must be satisfied for all x’ ~. on a path starting

with zero, R - I J 2 - I" 12 must be constantly &#x3E;0 onthispath. Hence,i IS1 Il y p

the harmonic function h has an analytic extension to every point x = t + iT)

satisfying



XXV.25

R1 being arbitrary, but smaller than R, we see that h is analytically
_

extendable to BR*
To show that BR is the largest domain where all harmonic functions

in BR can be extended, it is enough to show that for each boundary point

z E 6B R there exists a harmonic function h regular in BR which has

a singularity at z. But since z I B R ) there exists a y E such that
R R

Hence, the harmonic function

is regular in EL with singularity at z .

Remark 1. BR is called the harmonicity hull of BR , It is shown2013201320132013201320132013 20132013201320132013201320132013.20132013 

in the theory of polyharmonic functions that for every domain D c IRn

there exists a well-determined harmonicity hull D such that every harmonic

single-valued function in D has an analytic extension to D and D is the

largest such domain. However, in many cases, this "domain" D may

be a manifold over T, n

We can now state the following theorem:

Theorem VI. Each holomorphic function in a neighborhood of the

origin in T,n. can be developed into an Almansi expansion converging

uniformly on compacts inside BR for the largest R for which f is

holomorphic in BR .

Proof. Consider the largest BR in which f is holomorphic. Let
-° R

A be a compact set contained in B R - Hence, there is an R 1 R such

that A C BR , We can write by (5.2), (5.3), and ( 5 . 4 ), the Cauchy
1

formula:
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In view of our Lemma, the right-hand side represents a holomorphic function in

B ° , Since the formula is valid for x in the neighborhood of the origin, it
RI

is valid in the whole of B . Furthermore, for1
Hence, we can put the development

in the last integral, and noting that for

can write the formula for f(x) in BR 1

The coefficient h of x+... this series is a function of x inde-k 1 n 
mde

pendent of, R, (since the cycles r R 1 are all mutually homologous), and we

. can write

For fixed y in we can put x’ x, and the integrand up to a

factor independent of x’ becomes the Poisson kernel. Hence, it is a

harmonic function of x’, and, therefore, also of x . It follows that

hk(x) is a harmonic function, and, thus, we have got the Almansi

development (5.1) valid on any compact in B . *
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Remark 2. It is not difficult to prove that the harmonic coefficients

h k in the Almansi-development are uniquely determined by the function f .~

In the theory of polyharmonic functions, it is proved that if we restrict

the Almansi development to IRn, the development for any polyharmonic

function f is uniformly convergent on compacts in the largest star-domain

centered at the origin in which the function f is regular.
° 

Corollary VI’. Let P(t) be a non-degenerate homogeneous polynomial

of degree 2 with complex coefficients

Let L be a linear homeomorphism of onto n, t’ = Lt s llch that
n 

2 1 -
P(t) = t,.2. . If f(x) is holomorphic in L-ICBR)’ it has a develo rm:nt into a series

; =1 J ~ 

where hK (x) are holomorphic solutions of the equation

the series in (5.12) converging uniformly on compacts in 

The corollary is an immediate consequence of Theorem VI if we change

variables x into xl = Lx. As a special case, we can consider

P(t) = t2+ t + t2-t2 . The corresponding equation (5.13) is the wave-equation1 2 3 4 
° ’ 

.

(with t4 as time) and hence, we have a development of any analytic function

into solutions of the wave-equation multiplied by successive powers of

. 

2) We give briefly the proof. In (5.1) change x into y and restrict it to

Multiply both sides by the Poisson kernel corresponding to BR and

integrate over Sn-1 The left hand side gives a function of R and x com-
R 

° 

Go 
2k

pletely determined by f. The right-hand side becomes E R 2kh, (x), a

2 
o 

K

power series in R 2 with coefficients hk(x) uniquely determined.
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