# Séminaire Équations aux dérivées partielles - École Polytechnique 

## A. Menikoff <br> Hypoelliptic operators with double characteristics

Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977), exp. no 10, p. 1-8
[http://www.numdam.org/item?id=SEDP_1976-1977___A9_0](http://www.numdam.org/item?id=SEDP_1976-1977___A9_0)
© Séminaire Équations aux dérivées partielles (Polytechnique)
(École Polytechnique), 1976-1977, tous droits réservés.
L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FCOLE POLYTECHNIQUE

## CENTRE DE MATHÉMATIQUES

plateau de palaiseau 91128 palaiseau cedex
Téléphone 941.8200 - Poste N•
Télex : ECOLEX 691596 F


## HYPOELLIPTIC OPERATORS WITH DOUBLE CHARACTERISTICS

par A. MENIKOFF

## X. 1

I want to discuss pseudo-differential operators of the form $P=P_{m}(x, D)+P_{m-1}(x, D)+\ldots$ such that in a conic neighborhood $\Gamma$ of $\left(x_{o}, \varepsilon_{o}\right) \in R^{2 n}, P_{m}(x, f) \geq 0$ and vanishes to exactly second order on a submanifold $\Sigma$ of codimension 1 transverse to the fiber axis. $P$ is a classical pseudo-differential operator of order m. These assumptions imply that $P_{m}=Q U^{2}$ where $Q \notin 0$ and $d_{s} U \neq 0$ near ( $x_{0},{ }_{0}$ ), $Q$ and $U$ are real and homogeneous of order $\mathrm{m}-2$ and 1 respectively.
Recall that the definition of subprincipal symbol of $P$ is

$$
P_{m-1}^{S}(x, \mathscr{R})=P_{m-1}(x, F)-\frac{1}{2 i} \sum_{j=1}^{n} \frac{\partial^{2} P_{m}}{\partial x_{j} \partial g_{j}}
$$

The first two results $I$ want to talk about concern necessary and sufficient conditions for $P$ to be locally solvable and hypoelliptic.

Theorem 1 : Suppose that $\operatorname{Re} P_{m-1}^{s} \neq 0$ in $\Gamma$ and that whenever $\operatorname{Re} P_{m-1}^{s}<0$ at a point of $\Sigma$ then along the null bicharacteristic of $U$ through that point $\operatorname{Im} P_{m-1}^{S}$ has only zeros of even order $\leq k$.
(A) Thengiven any $\varphi \in S^{0}(\Gamma), \varphi\left(x_{0}, \xi_{o}\right) \neq 0$ there exist operators $E_{i}$, and $R_{i}, i=1,2$ such that

$$
\begin{equation*}
E_{i}: H_{s}(\Gamma) \rightarrow H_{S+m-2+}(k+2) / 2(k+1)(\Gamma) \quad \text { and } \tag{1}
\end{equation*}
$$

(2) $\quad R_{i}: H_{S}(\Gamma) \rightarrow H_{S+m-2+1 / k+1}(\Gamma)$ are bounded and
(3) $\quad \mathrm{PE}_{1}=\varphi\left(\mathbf{x}_{1} \mathrm{D}\right) I+\mathrm{R}_{1}$
(4) $\quad E_{2} P=\varphi\left(x_{1} D\right) I+R_{2}$
(B) $P$ is hypoelliptic and locally solvable in $\Gamma$

In the converse direction there is
$\underline{\text { Theorem } 2}:$ If at $\left(x_{0}, E\right) \in \Sigma, \operatorname{Re} P_{m-1}^{S}\left(x_{o},{ }_{o}\right)<0$ and $\operatorname{Im} P_{m-1}^{S}$ changes sign and has a zero of finite order on the null bicharacteristic of $U$ through ( $X_{0},{ }_{0}$ ) then $P(x, D)$ is not locally solvable at $x_{o}$.

Note that since the hypotheses of theorem 2 also hold
for $P^{*}, ~ P$ is also not hypoelliptic.
Theorem 2 is due to P. Wenston [5] for partial differential operators. Theorems 1 and 2 are due to P. Popivanov [2] and myself [1].

By means of Fourier integral operators the problem of studying $P$ may be reduced to considering

$$
\begin{equation*}
Q=D_{t}^{2}+a\left(t, x, D_{x}\right)+b\left(t, x, D_{x}, D_{t}\right) D_{t} \tag{5}
\end{equation*}
$$

where $a \in S^{1}, b \in S^{0}$. This is a consequence of the invariance of the assumptions and conclusions of theorem 2 under multiplication by real elliptic factors or conjugation by Fourier integral operators. Noting that $a(t, x, E)$ is the sub-principal symbol of $Q$ the assumptions of theorem 1 become that if Rea<0 then Im $a(t, x, f)$ has only zeros of even order $\leq k$ as a function of $t$. This, of course, implies that a has constant sign.

To understand the hypotheses of theorems 1 and 2 consider the ordinary differential operator

$$
\begin{equation*}
L=D_{t}^{2}+a(t, x, t) \tag{6}
\end{equation*}
$$

depending on $(x, \xi) \in R^{2 n}$ as parameters. Considering functions which are oscillatory in $x$, the local solvability of $Q^{*}$ is related to whether or not an estimate of the form

$$
\begin{equation*}
\|\|\mathbf{u}\| \leq \mathbf{C}\| \mathbf{L u} \| \tag{7}
\end{equation*}
$$

holds for some pair of norms on $C_{o}^{\infty}(R)$. Using the Green-Liouville approximation, $L u \sim 0$ has solutions

$$
u_{ \pm}(t, x, \xi)=\frac{1}{a^{1 / 4}\left(t, x, q^{\prime}\right)} e^{ \pm \int_{T(x, \xi)}^{t} \sqrt{a\left(t^{\prime}, x, \xi\right)^{\prime} d t^{\prime}}}
$$

If $\operatorname{Re} a<0$ and $\operatorname{Im} a(t, x, \xi)$ changes signs at $T(x, \varepsilon)$ then $\operatorname{Re} \sqrt{a}$ will also have a change of sign. This means that $L u \sim 0$ has a solution in \& and consequently an estimate of form (7) cannot hold.

To construct parametrices under the assumptions of theorem 1, I will use the notion of vector-valued pseudo-differential operators. The idea of using pseudo-differential operators whose symbols are operators between Hilbert space originated in Trèves [4]. I shall use an extension of this idea due to Sjbstrand [3] which allows the norms on the Hilbert spaces to vary.

Let $H_{1}$ and $H_{2}$ be a pair of Hilbert spaces whose norms depend on $\varepsilon \in \mathbf{R}^{n}$ such that

$$
\begin{equation*}
c\|u\|_{H_{i}} \leq\|u\|_{H_{i}(g)} \leq C(1+|\xi|)^{m_{i}}\|u\|_{H_{i}} \tag{9}
\end{equation*}
$$

for $i=1,2$. Let $\mathcal{L}\left(H_{1}(\xi), H_{2}(\varepsilon)\right)$ be the space of bounded operators from $H_{1} \rightarrow H_{2}$ with the uniform operator norm, also varying with 5. I will define the symbol in class $S_{\rho, \delta}^{m}\left(\Omega \times R^{n} ; H_{1}(\xi), H_{2}(\xi)\right)$ to be the class of functions $A(x, \xi): \Omega \times R^{n} \rightarrow \mathcal{L}\left(H_{1}(\xi), H_{2}(\xi)\right)$ such that

$$
\begin{equation*}
\left\|\partial_{x}^{\alpha} \partial_{\xi}^{B} A(x, \xi)\right\|_{\mathcal{L}\left(H_{1}(\xi), H_{2}(\xi)\right)} \leq C(1+|\xi|)^{m+\delta|\alpha|-\rho|\beta|} \tag{10}
\end{equation*}
$$

The corresponding class of operators given by

$$
A(x, D) u(x)=(2 \pi)^{-n} \int e^{i x \xi} A(x, \underline{q}) \hat{u}(\underline{f}) d \underline{f}
$$

will be denoted by $L_{\rho, \delta}^{m}\left(\Omega, H_{1}(D), H_{2}(D)\right)$, where $\Omega \subset \mathbf{R}^{n}$. These operators are at least maps

$$
A(x, D): C_{0}^{\infty}\left(\Omega, H_{1}\right) \rightarrow C^{\infty}\left(\Omega, H_{2}\right)
$$

Furthermore, the standard calculus of pseudo-differential operators still holds for these operators.

The special case of such operators $I$ will use is obtained by taking $H=L^{2}(R, d t)$ and $B(f)$ to be the completion of $C_{o}^{\infty}(R)$ in the norm

$$
\|u\|_{B(E)}=\left\|\left(1+\left|D_{t}\right|^{2}+\left|D_{x}\right|\right)^{(k+2) / 2(k+1)} u\right\|_{L}
$$

An example of the boundlessness of results for this class of operators is that if $A \in L_{\rho}^{\mathbf{o}}, \delta\left(R^{n} ; B(D), H\right)$ and $0 \leq \delta<1 / 2<\rho \leq 1$ then for any compact subset $K$ of $\Omega$

$$
\|A u\|_{L^{2}\left(\mathbf{R}^{n+1}\right)} \leq C\left\|\left(1+\left|D_{t}\right|^{2}+\left|D_{x}\right|\right)^{(k+2) / 2(k+1)} u\right\|
$$

for all $u \in C_{o}^{\infty}(K \times R)$.

To construct a parametrix of $Q=D_{t}^{2}+a\left(t, x, D_{x}\right)$ define
(11) $e(x, \xi, t, s)= \begin{cases}\frac{1}{2\left(a(t, x, g) a(s, x, f,)^{1 / 4}\right.} e^{-\int_{t}^{S} \sqrt{a\left(t^{\prime}, x, \xi\right)} d t^{\prime}} \\ e(x, \varepsilon, s, t) & \text { if } t \leq S\end{cases}$

Suppose Rea<0, and $\operatorname{Im} a \geq 0$, then $a^{1 / 2}$ is a smooth function of all its variables. Choose the square root in (11) so that $\operatorname{Re} a^{1 / 2} \geq 0$. Define the corresponding integral operator with kernel geas

$$
\begin{equation*}
E_{g}(x, \xi) f(t)=\int_{-\infty}^{\infty} g e(x, \varphi, t, s) f(s) d s \tag{12}
\end{equation*}
$$

where $g \in S^{o}\left(R^{2 n+2}\right)$. My candidate for a parametrix of $Q$ is $E_{1}(x, D)$.
A calculation will show that

$$
\begin{equation*}
L\left(x, t, D_{t}\right) \quad E(x, S)=I+E_{g} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
g=\left(\frac{a^{\prime \prime}}{4 a}-\frac{5}{16} \frac{a^{\prime 2}}{a^{2}}\right) \in s^{0} \tag{14}
\end{equation*}
$$

Equation (13) may be thought of as a statement about the multiplication of the symbols of $Q$ and $E(x, D)$. The crucial step in proving theorem 1 is
$\underline{\text { Lemma } 3}:$ With the above assumptions if $g \in S^{0}\left(R^{2 n+2}\right)$ then $\mathbf{E}_{g}(x, g) \in S_{\rho, \delta}^{0}(\Omega ; H, B(g))_{S}$ where

$$
\frac{1}{2}-\frac{1}{2(k+1)}=\delta<1 / 2<\rho=\frac{1}{2}+\frac{1}{2(k+1)}
$$

To prove lemma 3, I must show that

$$
\begin{equation*}
\left\|\left(1+\left(D_{t}\right)^{2}+|q|\right)^{(k+2) / 2(k+1)} E u\right\|_{L^{2}} \leq C\|u\|_{L^{2}} \tag{15}
\end{equation*}
$$

and similar estimates for $\partial_{x}^{\alpha} \partial_{g} \beta_{E}(x, \varnothing)$. I will need the following lemmas.
Lemma 4 : Suppose $k(t, s)$ is a measurable function on $\mathbf{R}^{2}$ such that

## X. 5

$$
\int|k(t, s)| d s \leq B \quad \text { and } \quad \int|k(t, s)| d t \leq B
$$

Then $k f(t)=\int k(t, s) f(s) d s$ is a bounded operator on $L^{2}(R)$ and $\|\kappa\| \leq$ B.

Lemma 5 : If $0 \leq a(t, X, \xi) \in S^{0}\left(\mathbb{R}^{n+1} \times \mathbb{R}^{n}\right)$ and has zeros in $t$ of order $\leq k$, then there is a constant $c>0$ such that

$$
\begin{equation*}
c|t-s|^{k+1}|\underline{Y}| \leq \int_{t}^{s} a\left(t^{\prime}, x, y\right) d t^{\prime} \tag{16}
\end{equation*}
$$

For a proof see the appendix of [4].

Lemma 6 : Given $C>0$ there is a constant $C^{\prime}>0$ such that for any complex number $z \quad|\operatorname{Im} z| \leq C|\operatorname{Re} z| \operatorname{implies}\left|\operatorname{Re} z^{1 / 2}\right| \geq C^{\prime}|\operatorname{Im} z| /|\operatorname{Re} z|^{1 / 2}$.

$$
\begin{aligned}
& \text { To prove (15), I will estimate } \\
& I=\int_{t}^{\infty}|e(x, \varepsilon, t, s)| d s \quad \text { and } \int_{-\infty}^{t}|e(x, t, t, s)| d s .
\end{aligned}
$$

Using the definition of $E$,

$$
\begin{equation*}
I \leq \int_{t}^{\infty} \frac{1}{|a(t) a(s)|^{1 / 4}} e^{-\int_{s}^{t} \cdot \Gamma a d t} d s \tag{17}
\end{equation*}
$$

Since $\operatorname{Re} a \neq 0 \quad|a(s) a(t)|^{1 / 4} \geq c|g|^{1 / 2}$. Combining, lemmas 5 and 6 give

$$
\operatorname{Re} \int_{t}^{s} \sqrt{a\left(t^{\prime}\right)} d t^{\prime} \geq C|\xi|^{1 / 2}|t-s|^{k+1}
$$

Using the last two inequalities in (17), I get

$$
I \leq C|\xi|^{-1 / 2} \int_{t}^{\infty} e^{-c|\xi|^{1 / 2}|t-s|^{k+1}} d s=C|E|^{-\frac{1}{2}-\frac{1}{2(k+1)}}
$$

Lemma 4, then yields the bound

$$
\left\||\xi|^{(k+1) / 2(k+2)} E(x, \xi) u\right\| \leq C\|u\|
$$

Since $D_{t}^{2} E=-a(t, x, 5) E+$ bounded operators and $a \in S^{1}$ we also may
estimate twice as many t-derivatives as x-derivatives. This gives (15). I am now in a position to complete the proof of theorem 1 by applying the calculus of pseudo-differential operators. Since $D_{t}^{2}$ is independent of $t$ the symbol of $D_{t}^{2} \circ E\left(x, D_{x}\right)$ is $D_{t}^{2}$ applied to the symbol of $E$. To compute the composition of $a(t, x, D)$ and $E$, consider a as being in the class $S^{1}\left(\Omega \times \mathbf{R}^{n} ; B(\xi) B(\xi)\right)$. I then have

$$
a\left(t, x, D_{x}\right) \circ E\left(x, D_{x}\right)=(a E)(x, D) \bmod L^{-\min (\rho, 1-\delta)}(H, B(f)) .
$$

Combining the above observations with (13) gives

$$
Q\left(t, x, D_{t}, D_{k}\right) \subset E\left(x, D_{x}\right)=I+R
$$

where $R \in L^{k / 2(k+1)}(\Omega ; H, B(D))$.

For R,there will be the estimate

$$
\left\|\left(1+\left|D_{t}\right|^{2}+\left|D_{x}\right|\right)^{1 / k+1} R u\right\| \leq c\|u\|, \quad u \in C_{o}^{\infty}\left(\mathbf{R}^{n+1}\right)
$$

This completes the proof of theorem 1.
An extension of the argument used for theorem 1 will give
Theorem 7 : Let $L=D_{t}^{2}+a(t, x, f)+b\left(t, x, D_{t}, D_{x}\right) D_{t}+\ldots$ where $a \in S^{1}$, $b \in S^{0}$ and suppose that $R e a \neq 0$ and if $\operatorname{Re} a<0$ then $\operatorname{Im}$ a has $a$ constant sign as a function of $t$ and $\operatorname{Im}$ a never vanishes on an open t-interval for fixed $x$ and $g$.

Then, $L$ is locally solvable and for any $\varepsilon>0$ there is a neighborhood $\omega$ of sufficiently small diameter such that

$$
\|u\|_{S+m-3 / 2} \leq \varepsilon\|P L u\|_{S}+C\|u\|_{S+m-2}, \quad u \in C_{o}^{\infty}(\omega)
$$

Operators whose sub-principal symbol vanishes on the characteristic variety may also be treated. Now let

$$
Q=D_{t}^{2}+b\left(t, x, D_{x}, D_{t}\right)
$$

where $b(0, x, r)=t^{k} a(t, x, g), a \neq 0$.

## X. 7

A parametrix for $L$ may be attempted to be constructed in the same way as the one in theorem 1 was. Consider the ordinary differential operator $L=D_{t}^{2}+t^{k} a(t, x, \varepsilon)$. A solution of $L u \sim 0$ may be sought of the form

$$
u=g\left(t, x, \frac{g}{5}\right) v(\phi(t, x, f))
$$

where $V$ is a solution of $-V^{\prime \prime}+s^{k} V(s)=0$. This will force that

$$
\phi=\left(k+2 / 2 \int_{0}^{t} \sqrt{t^{k} a} d t\right)^{2 / k+2}
$$

and $g=\phi_{t}^{-1 / 2}$. Then $L u=\left(\frac{-d^{2} g}{d t^{2}}\right) V(\phi)$.

If $\mathrm{Lu} \sim 0$ has two independent solutions which increase and decrease exponentially on opposites sides of the t-axis, a parametrix may again be constructed. For instance, I have shown

Theorem 8 : If either $a\left(0, x_{o}, \overline{5}_{o}\right)$ is not real, $\phi$ or $k$ is even and $a\left(0, x_{o}, \rho_{o}\right)>0$ then $L$ is hypoelliptic and locally solvable and has left and right parametrices.

Theorem 9 : If $a\left(0, x_{0}, \xi_{0}\right)$ is real and Im a has a zero of first order then $Q$ is hypoelliptic.

Theorem $10:$ If $a(0, x, \varphi)$ is real and $\operatorname{Im} b\left(0, x, \Sigma_{5}\right) \neq 0$, then

$$
Q=D_{t}^{2}+t^{k}\left(a\left(t, x, D_{x}\right)+t^{\ell} b\left(t, x, D_{x}\right)\right)
$$

is locally solvable when $\ell<k+2$.
I don't know what the situation is for the operators of
theorem 10 if $\ell \geqslant k+2$, nor do $I$ havesolvability results if $k>1$ in theorem 8 etc...

## REFERENCES

[1] A. Menikoff : On hypoelliptic operators with double characteristics An. Sc. N. Sup. di Pisa, to appear.
[2] P. Popivanov : Proc. Bulgarian Acad. Sc. (1975).
[3] J. Sjbstrand : Parametrices for pseudo-differential operators with multiple characteristics. Ark. fUr Mat. 12, 85-130 (1974).
[4] F. Trèves : A new method of proof of the subelliptic estimates. Comm. Pure and Appl. Math. 24, 71-115 (1971).
[5] P. Wenston : A necessary condition for the local solvability of $P_{m}^{2}(x, D)+P_{2 m-1}(x, D)$; J. Diff. Eq. ;to appear.

