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I want to discuss pseudo-differential operators of the
form P = Pm(x,D)a-Pm_i(x,D)+... such that in a conic neighborhood T
of (xo,Eo) e R%", P (x,2) 2 0 and vanishes to exactly second order
on a submanifold ¥ of codimension 1 transverse to the fiber axis. P
is a classical pseudo-differential operator of order m. These
assumptions imply that P = QU2 whefe Q # 0 and ng £ O near (xo,go),
Q and U are real and homogeneous of order m-2 and 1 respectively.
Recall that the definition of subprincipal symbol of P is
2
P () o B (er) - LB oom
m-1 m-1 2i o . 3x.9dF.
=133

The first two results I want to talk about concern necessary and suffi-

cient conditions for P to be locally solvable and hypoelliptic.

Theorem 1 : Suppose that Re P:_l A 0 inT and that whenever Re P:_1<i0
at a point of ¥ then along the null bicharacteristic of U through that

point Im P:_ has only zeros of even order < k.

1
(A) Then given any ¢ € s°(r), @(xo,go) # 0 there exist
operators Ei’ and Ri’ i=1,2 such that

(1) E; + H(T) =~ H_ © o0 (e2)/2(ke1)T)  and

(2) Ry + H(T) = H_ ' 5. 4/Kkeq (I) are bounded and

(3) PE, = w(xID)I + Ry

(4) E,P = ?(x,D)T + R,

(B) P is hypoelliptic and locally solvable in T

In the converse direction there is

S S
Theorem 2 : If at (x ,®) € T, Re P (x ,# ) < 0 and ImP . changes

1
sign and has a zero of finite order on the null bicharacteristic of U

through (xo,go) then P(x,D) is not locally solvable at X, -

Note that since the hypotheses of theorem 2 also hold
for P¥, P is also not hypoelliptic.
Theorem 2 is due to P. Wenston ES] for partial differential

operators. Theorems 1 and 2 are due to P. Popivanov [2] and myself El].
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By means of Fourier integral operators the problem of

studying P may be reduced to considering

(5) Q = Di + a(t,x,Dx) + b(t,x,Dx,Dt)Dt
where a € S1 s b € S°. This is a consequence of the invariance of
the assumptions and conclusions of theorem 2 under multiplication
by real elliptic factors or conjugation by Fourier integral operators.
Noting that a(t,x,?) is the sub-principal symbol of Q the assumptions of
theorem 1 become that if Rea< O then Im a(t,x,?) has only zeros of
even order < k as a function of t. This, of course, implies that
a has constant sign.

To understand the hypothesss of theorems 1 and 2 consider the

ordinary differential operator

(6) L = Df + a(t,x,2)

depending on (x,g) € R2n as parameters. Considering functions which
are oscillatory in x, the local solvability of Q% is related to

whether or not an estimate of the form

(7) el = cflzul

holds for some pair of norms on dZ(R).Using the Green-Liouville

eiI;(x,g)V a(t',x,g)dt"’

approximation, Lu ~ O has solutionsg

1
a1/4(t, x,E)

(8) u+ (t,x,g) =

If Re a < 0 and Ima(t,x,€) changes signs at T(x,f) then ReJ;r will
also have a change of sign. This means that Lu~ 0 has a solution in 5
and consequently an estimate of form (7) cannot hold.
To construct parametrices under the assumptions of theorem 1,

I will use the notion of vector-valued pseudo-differential operators.
The idea of using pseudo-differential operators whose symbols are
operators between Hilbert space originated in Treves [4]. I shall use
an extension of this idea due to Sj8strand [3] which allows the norms

on the Hilbert spaces to vary.
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Let'H1 and H2 be a pair of Hilbert spaces whose norms depend

on £ € R" such that
my
(9) llully = il gy = CCte 8D ull,
i i i

for i=1,2. Let £(H1(g),H2(E)) be the space of bounded operators from

H1 - H2 with the uniform operator norm, also varying with £. I will

define the symbol in class s" «7XIR y Hy(2),H (g)) to be the class of
functions A(x,£) : Qx R~ .s:(u (£),H (g)) such that

(10) Haa BBA(X’E)H <C(1+ |§l)m+6la| 'pIBI
* £(H,(2),H,(E))

The corresponding class of operators given by
AGx, D)u(x) = (207 [P a(x,e)b(r)ar

will be denoted by L 0 (Q,H (p),H (D)), where 0 c R" . These operators

are at least maps
A(x,D) : Cz(Q,H1) - c”(g,nz)

Furthermore, the standard calculus of pseudo-differential operators still
holds for these operators.

The special case of such operators I will use is obtained by
taking H= L2(R,dt) and B(r) to be the completion of c:(n) in the norm

Hu“B(!) - H(1+’|Dt|2+ IDxl)(k+2)/2(k+1)u” )

An example of the boundlessness of results for this class of operators

is that if A€ L;’ 6(Rn;B(D),H) and 0< 6< 1/2< p < 1 then for any compact
9

subset K of

“Au“L2(Rn+1) < cllt1+In, 1%+ |Dx|)(k+2)/2(k+1)un

o0
for all ué€ Co(KxiR).



To construct a parametrix of Q = D2 + a(t,x,Dx) define

t
s —
1 -j‘t 4 a(t',x,g)dt'
174 e if t< S
2(a(t,x,§)a(s,x,5))
(11) e(x,g,t,s) =
e()hE,S’t) if s <t

1/2 is a smooth function of

Suppose Rea<0, and Ima =0 , then a
1/2:2 0

all its variables. Choose the square root in (11) so that Rea
Define the corresponding integral operator with kernel ge as
©

(12) Eg(x,g)f(t) =[ & e(x,2,t,8)f(s)ds

where g € SO(R2n+2)

A calculation will show that

. My candidate for a parametrix of Q is E1(x,D).

(13) L(x,t,Dt) E(x,;); I+Eg
where
2
a' 5 a' o
(14) g = (Z;f'- 16 :F?-) € S

Equation (13) may be thought of as a statement about the multiplication
of the symbols of Q and E(x,D). The crucial step in proving theorem 1
is

2n+2

Lemma 3 : With the above assumptions if g € SO(II ) then

o
Eg(x,g) € Sp,6(Q;H,B(§))S where

11 1 1
T 30ay - 0<V2 <P =3 Y5

To PrYove lemma 3, I must show that

(15) (14 (Dt)2+ lgl)(k+2)/2(k+1)EuH < C||u||L2

L2
and similar estimates for ai BEBE(X,P). I will need the following lemmas.

Lemma 4 § Suppose k(t,s) is a measurable function on lézsuch that



I|k(t,s)|ds < B and J‘Ik(t,s)ldts B .

Then ¥ f(t) = Ik(t,s)f(s)ds is a bounded operator on L2(R) and
Il = 5.

n+1

Lemma 5 : 1If 0< a(t,X,E) € S%(R x R™) and has zeros in t of order

< k, then there is a constant ¢> 0 such that
. k+1 s
(16) clt-s[™ el < [ alt',x,g)at!
t
For a proof see the appendix of E4].

Lemma 6 : Given C> 0 there is a constant C'> 0 such that for any
complex number z |Imz|< C|Rez| implies |Rezl/2|2 Cquzl/lRez|1/2.

To prove (15), I will estimate

® t
I = f |e(x,5,ty8)]ds and I | e(x ,g,t,s)lds .
t

- 00

Using the definition of E,

<) —It‘[;dt

1 s
(17) I < e ds .
J“t la(t)a(s)Ii/4
Since Rea#Z O |a(s)a(t)|1/4 2(”;'1/2- Combining, lemmas 5 and 6 give

S
Re [ “a(t')at'z cle| V2]t - sf*+?
t

Using the last two inequalities in (17), I get
1

1
"2 T 2(k+1)

- 1/2 k+1
I < clgl"i/zj e L e L

t

Lemma 4, then yields the bound

'&+1y2(k+2)

e BGog)u] < cflul -

Since DfE = - a(t,x,®#)E+ bounded operators and ac¢ 51 we also may
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estimate twice as many t-derivatives as x-derivatives. This gives (15).
I am now in a position to complete the proof of theorem 1
by applying the calculus of pseudo-differential operators. Since Di

is independent of t the symbol of D2o E(x,Dx) is Di applied to the

t
symbol of E. To compute the composition of a(t,x,D) and E, consider

a as being in the class SIG7X RrR"; B(¢) B(E)). I then have
-min(p,1-8)
a(t,x,D_) o E(x,D_) = (aE)(x,D) mod L' (H,B(®)).
Combining the above observations with (13) gives

Q(t,x,D )oE(x,Dx) =I+R ,

t’Dk

k/2(k+1)(Q,

where R € L H,B(D)) .

For R,there will be the estimate

lca+ 1o 1%+ I DY®Rull < clull, uwe CC(R™D) .

This completes the proof of theorem 1.

An extension of the argument used for theorem 1 will give
Theorem 7 : Let L= Di + a(t,x,?)-l-b(t,x,Dt,Dx)Dt +... where a€ Sls
b€ s° and suppose that Rea /4 0 and if Rea< 0 then Im a has a
constant sign as a function of t and Im a never vanishes on an open

t-interval for fixed x and %.

Then, L is locally solvable and for any €> O there is a

neighborhood w of sufficiently small diameter such that

< sl‘PthHs + C\hﬂ] y uct€ dZ(w) .

s+m-2

Operators whose sub-principal symbol vanishes on the characteristic

variety may also be treated. Now let

2
Q = Dt + b(t,x,Dx9Dt)

where b(0,x,r) = ¢k a(t,x,8) , a#£0.
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A parametrix for L may be attempted to be constructed in the same way
as the one in theorem 1 was . Consider the ordinary differential

k
operator L= Di + t a(tyx,f). A solution of Lu~0 may be sought of the

form
u = g(t,x,g)V(b(t,x,{))

where V is a solution of -V" 4+ skV(s) = 0 . This will force that

b = (k+2/2 J‘ot Jt¥a atp/k+2 ,

2
0 "Y2 | Then Lu - ("d—zﬁ) v(d).

and g =
t dt

If Lu~0 has two independent solutions which increase and
decrease exponentially on opposites sides of the t-axis, a parametrix

may again be constructed. For instance, I have shown

Theorem 8 : If either a(O,xo,Eo) is not real, b or k is even and
a(O,xo,go) > 0 then L is hypoelliptic and locally solvable and has

left and right parametrices.

Theorem 9 : If a(O,xo,go) is real and Ima has a zero of first order

then Q is hypoelliptic.

Theorem 10 : If a(0,x,?) is real and Imb(0,x,€) £ O, then

k 2
Q = D,f + t (a(t,x,Dx) + t b(t,x,Dx))

is locally solvable when £ < k+2.
I don't know what the situation is for the operators of
theorem 10 if £ > k+2, nor do I have non-solvability results

if k> 1 in theorem 8 etc...
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