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1. INTRODUCTION AND THE MAIN RESULT.

The purpose of this article is to derive a multiplicative symbolic

calculus for left invariant zero order homogeneous pseudo-differential operators

on the Heisenberg group, H1 . * At the end, I shall indicate that the restriction

"zero order" can be discarded and, with some obvious modifications so can

"homogeneity". But, for the sake of clarity, I shall restrict the discussion

to operators appearing in my first sentence.

The simplest noncommutative nilpotent Lie group is the, so called,

Heisenberg group, Hl, with underlying manifold IR3 = [(Xi,x2,t)} and with
I 1 2

the group law

(1.1) should be looked upon as the non abelian analogue of Euclidean trans-

3 ,
lation on 1R3 , Note that x IR and writing z = xl +ix2 the Heisenberg

group law can be written in the following symbolic form

Here (z , t) stands for (z,z,t) or (xl,x2,t) . With this convention, I

shall continue using the notation (z~t) for points of ([ x 1R . The unit

of H1 is (z,t) = (0,0) and

00 3
Given functions, (p 6 C 00 ( JR3 ) the H-convolution (Heisenberg

0

convolution) is usually defined by

where u - (z,t) , v - (w,s) and dv = dYl dy 2 ds, with w y is

Lebesgue measure on lR3 , Set
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i.e. Tu 
is left translation with respect to Then .

1 

since d(u  v) = dv follows easily from the definition of the Heisenberg

translation. Thus one has

In other words the convolution commutes with left translations on H , 1 or

the H-convolution product is associative,

Now I am ready to introduce principal value convolution operators on H . *
These are the analogues of Mikhlin-Calderon-Zygmund principal value convolution

operators on IR 2 in general).

Let

denote the Heisenberg dilation. F is said to be H-homogeneous of degree

m on H 1 if

Next one introduces a norm in H1 by

which is H-homogeneous of degree 1. The distance, d(u~v), of the points

H 1 is def i ned to be
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00 0

Suppose G E C (JR B0) is H-homogeneous of degree y . Then G

is integrable near the origin if y &#x3E; -4. This article is mainly concerned

with convolution operators on H , induced by functions which are H-homogeneous
of the critical degree, -4 .

00 Q
1.12 Def ini tion : Let F E C ro (m3 0) , H-homogeneous of degree -4. F is

said to have principal value zero if

where d6 is the induced measure on the Heisenberg unit ball, d((z,t),0) - 1.

The basic result concerning principal value convolution operators

on H 1 is the following - see ~3~,

1.14 Proposition : -. Let’ F E H-homogeneous of degree -4 with

principal value zero. Then F induces a "principal value convolution operator",

given by

on functions y E c’(]R 3 ) . F can be extented to a bounded operator
o

In particular, principal value convolution operators can be composed.

Furthermore, their composition yields another principal value convolution operator.

For the rest of this article I shall denote principal value convo-

lution operators by capital letters, F, G, etc.. and their composition, simply

by F * H G.

n 00 3
The Euclidean Fourier transform, ’?, of (p E C ( IR3 ) is given by’ 

o
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where

Its inverse is

with d~ = dS2 . If F E H-homogeneous of degree -4 with

vanishing principal value, then F exists as a tempered distribution.

Furthermore E c (TR B0) and H-homogeneous of degree zero ([l]y[l3]).
The following result can be found in Ell,[71 and 1131.

1.19 Proposition : -. Let F induce a left-invariant principal value convo-

lution operator on Hi . Then has the following representation as

a pseudo-differential operator

where

The best known example of a left invariant principal value convo-

lution operator on H1 is induced by the singular Cauchy-Szeg8 kernel, S,

given by

If Hi is viewed’as the boundary of the generalized upper half-

z &#x3E; /zl/2} E 01522, then S6L (H.) , is the projec-
tion of on to the boundary values of the Hardy space, H 2 (.5) , of1 2

holomorphic functions A simple calculation yields the Fourier trans-

form, ’ S, of S, namely 
.. -



.5

Since S is a projection, one has

This does not follow from classical symbol multiplication, as can be seen

from

Of course, one expects this, since left-invariant convolution opera-

tors on H1 do not, in general, commute, hence, there can be no commutative

symbolic calculus for them. It is useful to prove (1.23) by an explicit calcu-

lation because it yields the first clue to finding a multiplicative symbolic

calculus, given by infinite matrix symbols (Theorem 1.47), for such operators.

I shall carry out this calculation in section 3.

S turns out to be the simplest of a large number of "basic operators"

on H1 induced by Laguerre functions. Laguerre functions have already been

used in the study of the "twisted convolution", or, equivalently, the

"Heisenberg convolution", for several decades. More precisely, one defines

the generalized Laguerre polynomials, L (p) f k,p = 0,1,2,... via the

following generating function formula

Then

are known as the "Laguerre functions", where x ? 0 and p,n = 0~1~2~.,,

It is well known, that

is a complete orthonormal set of functions in L 2(o,’*) for each p = 0,1,2,...

(see 
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1.27 Definition : I define the exponential Laguerre functions,

on 1R2 by

and

where k,p = 0,1,2... and

A

Suppose we are given F(C,T), H-homogeneous of degree 0, i.e.

A

The homogeneity permits us to write F as a direct sum of two functions
B -

F+ for T&#x3E;0 and F - for Namely

where

and

In particular, one has, formally, the decomposition

where
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and

. Thus Proposition 1.19 implies that

can be expanded in an exponential Laguerre series, namely, with

/B 1B

This expansion is unique. Given a function G -- G(~1,S2) , y I collect

the coefficients of its expansion in an exponential Laguerre series in the

form of an infinite matrix. As a matter os fact I define two infinite matrices,
B /B A I,

n + (G) First, + (G) can be written as a sum of matrices, each of

whose non zero elements occur in a single (sub -, or super-) diagonal. Thus

where, if p = 0,1~2,...

is the matrix, whose p-th superdiagonal is

and the rest of its elements are zero.

Similarly,

is the matrix, whose p-th subdiagonal is
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A A

and the rest of its elements vanish. Hence, in its usual form, 1: +(G) looks

like

A (p)
I note that the upper and lower induces of 1§ do not represent

the usual position as matrix elements. The upper index represents the sub-

or super- diagonal and the lower index its position in that diagonal. It

is not difficult to see that in the (i,j)-th position one has the element

^ (A ^ ^
Now I define £ - (G) as the transpose i , e .

1.45 Definition : Let F(z,t) E ]RB0) be H-homogeneous of degree -4

with zero principal value. Equivalentlyj its Fourier transform F() E C (]R B0)
m B

is H-homogeneous of degree 0. I define the Laguerre matrix (F) by

It turns out that the Laguerre matrix plays the same role for princi-

pal value convolution operators on H1 that is usually assigned to the classical
symbol of Mikhlin-Calderon-Zygmund operators on IRn . More precisely, I shall

now state the main result of this article.
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00

1.47 Theorem : Let F, G 6 C (0152xmBO) be H-homogeneous of degree -4

with vanishing principal value. Then

The proof is given in sections 2-6. I should point out that Theorem

1.47 works for left-invariant pseudo-differential (convolution) operators

with arbitrary homogeneity on H . This remark will be used in section 7,
where I apply the Laguerre matrix calculus, i.e. (1.48), to "invert" some

well known left-invariant differential operators on Y including the

famous Hans Lewy operator. I shall also indicate how, in a rather natural

manner, the classical Mikhlin-Calderon-Sygmund calculus for principal value

convolution operators on 0152 = IR 2 can be derived from theorem 1.47.

Finally, in section 8, 1 shall discuss some questions related to

Theorem 1.47 which I do not treat in this article.

2. THE TWISTED CONVOLUTION

In section 1 I introduced two representations of #H , one in termsri

of F(z,t) - see (1.3) and (1.15) - and another as a pseudo-differential ope-

rator induced by ^ ~ - F ( ~ , ) see ( 1.20) . In the proof of Theorem 1.47 it turns

out to be more convenient to use a third representation, namely the "twisted
»

convolution" given in terms of F(z,~) , the partial Fourier transform of F

with respect to t . Let E Co(Hl). I define by
0 1 y I

In particular

Introducing (2.2) for 9 in and integrating out the s variable

one obtains
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where

is the "twisted convolution" with parameter T E (_00,00). Here w = Yl+iY2 .
I note that

and

Using (2.6) we find Ck from JE . More precisely, an elementary calcula-
tion yields

2~7 Proposition : Let z = lzi eie and p,k=0~1~2~.... Then

and

To prove Theorem 1.47 we must show that

and that
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A n

Expanding F and G in an exponential Laguerre series the proof of (2.10)

is reduced to showing that

where the indices (p,k) , (q,m) and (r,n) are related via the matrix

multiplication of Theorem 1.47. Taking partial Fourier transforms in t of

both sides of (2.12), this is equivalent to showing that

(2.11) is proved by a dual argument.

3. THE ORTHOGONAL PROJECTIONS

The derivation of (1.48) is based on two important properties of

are mutually orthogonal projections, and

can be represented as left-invariant derivatives

(i) is derived in section 3 and (ii) in section 4, where, the composition

will be represented in the form of the twisted convolution, (2.4).

"(o) ,
.1 Theorem : The operators !k *T’ I k = 0 1 2 ... are mutuall ortho-

gonal projections on L2(JR2), i .e.

for each fixed T E (-0000) where 6 = 0 or 1 according to k/m or
km

k = m.
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Proof : We may assume that T I 0. Then

where w = Yl+iY2 and we replaced , Using the

generating function, (1,24)~ one has

I shall calculate

Now

where I set

Finally

yields
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Replacing , we found

which proves Theorem 3.1.

H 1 has Z,Z and T for a basis of its Lie Algebra of Left-invariant

vector fields, where

with the usual convention

In (z,T) space I shall need the operators



14

Given f,g E L2(0152) one has the inner product

/

The following result is a simple consequence of the definitions of ZT and

k .

2
4.8 Proposition : (i) Z 

T 
and -Z 

T 
are mutually adjoint in i.e.

( (p) are t 1 d" 1* - 1 t. o erators i , e .(ii) 11k and S, 
k 

are mutually convolution operators, I,e.) 
k k Y J T P

I shall derive the composition of the exponential Laguerre functions,
’(P) ’V V(O)£ k y by representing them as Z and -Z derivatives of s. Since

the s induce orthogonal P ro J ’ections they can be easily composed. For

this I need a few simple properties of the generalized Laguerre polynomials,

(se 1151). .
k

and

(4.11), (4.12) and (4-13) can be derived from (1.24) .
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4.14 Proposition : Let T &#x3E; 0. Then

where p,k = 0~1,2,...

4.17 Corollary : Again , I &#x3E; 0 and p,k = 0,1,2,.... Then

and

Here F(z) denotes the Gamma function,

if Re z &#x3E; 0. Note 

N 14 (p) *Proof of Proposition 4.14 : Since Z Z and I k ’ commute with left

translations , it suffices to apply ZT and to the function C k s i.e.

we are permitted to set w = 0 in the kernel of the operator X k i~ T . .
Then
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where I used (4.11) and (4.12). This proves ( 4 .15 ) .

Similarly

where I used (4.12) and ( 4 .13 ) . This proves (4.16) and we have proved Proposition

4.14.

Now the calculation of

is reduced to finding

This can he done via transpositi.on. Namely
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i.e.

Similarly

Iterating this procedure we have derived

and

and

Proof : Using (4.23) and (4.30) we have
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which yields (4.32) in view of (4.18). (4.33) follows from (4.32) by transpo-

sition. This proves Theorem 4.31.

Next we have the somewhat lengthier calculations of

where p~q ~ 0. First of all note that, if T &#x3E; 0
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Thus I must calculate

Then for T &#x3E; 0 y

Proof : Explicitly one has

Hence

where

Therefore

Now formula (5.1.2) of namely

yields Lemma 4.37.
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4.~5 Let s = 1,2,.... Then

and

as long as T &#x3E; 0.

Proof : Note that

(4.48)

Therefore

Therefore a simple induction argument yields
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Now (4.49) and Lemma (4.37) imply (4.46). Similarly

Since

by induction we have

which, in view of Lemma 4.37, yields (4.47), and, hence, Lemma 4.45.

4.51 Theorem : Assume T &#x3E; 0
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(i) If k+p = m+q , then

(ii) If k+p/m+q y then

Proof : (i) If k+p = m+q and p ? q then ( 4 .36) ~ (4.46) and (4.18)

yield

The case p :9 q follows by duality (transposition).

(ii) is a consequence of (4.36) .

4.54 Theorem : Again , T &#x3E; 0 .

(i) Let m=k . Then
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(ii) If m ~ k~ then

Proof : Proceeding as in the proof of Theorem 4.51, one has

which vanishes if mfk, proving (4.56). If m=k and q2!p, then

where I used (4.47) and (4.19). The case q ~ p follows by duality, which

proves Theorem 4.54.

5. PROOF OF THEOREM 1.47 WHEN T &#x3E; 0

According to (2.13) and the discussion leading up to it, all we

have to prove is that
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where the indeces (p,k), (q,m) and (r,n) are related via the matrix multipli-
cation of Theorem 1.47. More precisely, (1.43) implies that, for T &#x3E; 0,

Theorem 1.47 is equivalent to the following result.

5 .1 Theorem : Suppose T &#x3E; 0. Let (i,j) and (k,.Z) denote matrix positions.

Then

Proof : Theorem 5.1 is simply the collection of the results of section 4.

There are four cases

(i) ij ~ kl. Then (4.32) is equivalent to

(ii) Then

is just rephrasing (4.33).
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(iii) ij ~ k&#x3E;2 . Then

is the statement of Theorem 4.51. Finally,

(iv) i&#x3E;j, k ~ . Then

is equivalent to Theorem 4.54. This proves Theorem 5.1 and thus we have

proved Theorem 1.47 if T &#x3E; 0 .

6. THE PROOF OF THEOREM 1.47 WHEN 1:  0

The proof is based on the following observation.

6.1 Lemma : For 0 one has
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Proof of Lemma 6.1 : Substituting c = z-w yields

which proves Lemma 6.1 .

Therefore

In other words,

Transposing both sides yields
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which is (2.11). Thus we, finally, finished the proof of Theorem 1.47, the

main result of this article, and are ready to discuss examples.

7. EXAMPLES AND APPLICATIONS

I shall give three applications of the symbolic calculus, i.e.

Theorem 1.47 . The first two are concerned with well known left-invariant

differential operators on H1 ~ including the Hans Levy operator. Here I

discard the restriction that the symbol of the operator is homogeneous of

degree zero. For a third example I show that the Mikhlin-Calderon-Zygmund

operators on have a natural extension to H 1 as left invariant prin-

cipal value convolution operators and the Mikhlin-Calderon-Zygmund (MCZ)

calculus is a consequence of Theorem 1.47 .

(1) The operators 0 
a (Iain 13]) are defined by

where

and Z is its complex conjugate - also see section 4. The symbol of 0 a
a

is given by

Since I work on the Fourier transform side I introduce the notation

n
where stands for the right hand side of ( 1.20~ . Then
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Note, that

is homogeneous of degree zero. An easy calculation yields

Consequently

i.e.

where

Therefore Theorem 1.47 implies
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7.11 Theorem : D 
a 

is invertible if and only if 2k + 1 + a ~ 0, k = 0,1,2, ...

In that case the inverse Laguerre matrix is

where

and, consequently

Remark : -. For other results concerning 0 
a 

the reader should consult

[2], 13J, [7j and [8].

, . 
- a a

(2) A more interesting application is the "inversion" of -Z = - + iz 2013 . *
~z 

~

Z is the Hans Lewy operator ([101). A convenient way of calculating its

Laguerre matrix is to write it as follows

where I used (4.15) if T &#x3E; 0 and a similar procedure if T  0. Therefore
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and

Setting

and .

one has

where I is the identity matrix and 1 (iti) is the matrix with 1 in the (l,l)

position and zeros everywhere else. Thus 1(1,1) represents Z (o) for T  o.
’ 

- 0

Now, Theorem 1.47 yields

7.21 Theorem : Set

Then
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where

Remark : A simple calculation yields

i.e. the Cauchy - SzegB (singular) projection on to the boundary values of

the Hardy space of antiholomorphic functions on the generalized upper half-
2

plane 

(3) Consider a Mikhlin - Calderon - Zygmund operator on ll% 2 = G induced by

a homogeneous function f of degree -2, whose symbol y f = y has the

following Fourier series expansion

I shall extend it to a left-invariant principal

value convolution operator on H . * Since

and

C and § can be extended to

and
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k
I also extend k by

and similarly for E(çk) . It is easy to see that

k t t
This also holds for E() . As for ’e’, I note that

Usin the fact that (o) - s are ortho onal ro’ections aUsing the fact that s are orthogonal projections, aUsing the fact that K 
- s 

Irl’), of ICI’ - 
J 

- 

n byreasonable definition of the extension, of is given by

k = 0~±1 ~±2, ..., where

D already occurs in example (1) of this section. Recall the formula
o

For k = 1,2,... I write
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where I used (1.24) to carry out the summation. The last integral in (7.36)

permits one to take the limit as T - 0 and yields.

7.3? Proposition : Let k = 1,2,3, .... Then

and

7.40 Corollary : Set

Then

and, replacing Z by Z in (?.41)~ one has

where i = )§) I e1 .S .

Since the reader is, by now, probably lost in the technicalities,

let me state again, that the purpose of the present discussion is to derive

the following formula

which is the Mikhlin - Calderon - Zygmund calculus on IR2 . To derive (7.44)

I need a result on the behaviour of the Laguerre series for large argument.
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?.45 Proposition : Let p = 0~ ±2~.... Let

where c(p) is independent of n = 1,2,3,.... Then

Proof : Using the integral formula of (7.36) the following limits can be

evaluated with no difficulty.

and

This proves (7.47) if Note that

for each individual n = 0,1,2,.... Therefore to prove Proposition 7.45

it suffices to prove the following Lemma.

?.51 Lemma : Assume

Proof of Lemma 7.51 : : Recall the Hankel transform of the Laguerre functions
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where J is the standard Bessel function.
p

Suppose p=O. Using Schwartz’s inequality and the boundedness of J0 , , one

has

By choosing N sufficiently large, (7.54) can be made arbitrarily small.

Next choosing x sufficiently large

can also be made arbitrarily small. This proves (7.52) when p = 0. A similar

argument yields Lemma 7.51 for arbitrary p . Thus we proved Lemma 7.51 and,

hence, Proposition 7.45.

Now I am ready to derive (?.44). Thus , if p~q ~ 0, then
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Therefore, according to Proposition 7.45, I have derived (7.44).

This calculation, of course, works for arbitrary p and q . Extending

by linearity, I have obtained the classical Mikhlin - Calderon - Zygmund
-

calculus. To state it, a let me recall (7.4), the definition of 3, namely

7.56 Theorem : (M.C.Z.) Let f and g induce principal value convolu-

tion operators on . Then

To come full circle, Proposition 7.45 implies the following result.

7.58 Theorem : Let F induce a principal value convolution operator on
A A - -  - - -- -

H1 with Laguerre matrix

has the following expansion in a Fourier series

where
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7.62 Remark : Suppose we consider the "diagonals" of the Laguerre matrix
1

as the analogues of the exponentials in a Fourier series on S - this makes

sense in view of Theorem 7.58. Then, by summing the Fourier series one obtains

a symbol on m2, and by summing the Laguerre diagonals one obtains the
Laguerre "symbol" (matrix) on H1 . * This confirms, heuristically, the idea
proposed in this article, that the Laguerre matrix calculus on H1 replaces

the classical calculus of symbols on W ,

7.63 Remark : I defined the extension operator, E, by

A /’

(i) E(f) - F for some F, which induces a principal value convolu-

tion operator on H, , and

where f induces a principal value convolution operator on IR2 . . E is not

defined uniquely by (i) and (ii) and in example (3) I made a particular choice

that I found convenient. Actually f can have arbitrary homogeneity and then
A

E(f) has the same H-homogeneity. A similar extension operator was used in [41
and [5J to generalize the results of ~6~ - also note example (2) in section 7

of this article - to some left-invariant homogeneous di.fferential operators

on H .

n

8. FINAL COMMENTS

There is a great deal of work to be done to make the "Laguerre

calculus" into an effective working tool of analysis. To begin with, (i)

Theorem 1.47 should be extended to H , Y i.e. to arbitrary dimensional
n

Heisenberg groups with general positive definite Levi forms (see (ii)

a calculus is needed to invert Laguerre matrices, and (iii) properties of

the symbol should be characterized by its exponential Laguerre series and

vice-versa. Then all this should be transplanted to manifolds - some of this

can already be found in 
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Next one should include elliptic symbols in the Laguerre calculus.

This will allow a more systematic treatment of some non-elliptic boundary

value problems, e.g. the a-Neumann problem on strongly pseudo-convex domains,

Bergmann kernels, etc. All of this will certainly take a great deal of time

and effort. I shall return to these questions in future publications.
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