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We are here concerned with the equivalence problem of systems of partial

differential equations. To state the problem more precisely, let E (resp. U) be a

vector space over R (resp. an open neighborhood of a point p in and denote by

(E,E,U,p) a system of partial differential equations E for an unknown E-valued

function on U. p is considered as a reference point so that we may shrink U whenever

it is necessary to do so. We now fix (~,E,U,p), and ask for an arbitrary 
to find a constructive procedure to check if the latter is obtained from the former

by a change of variables E’ XU’ + E x U over (U’ ,p’) ~ (U,p) , or a more general

change like a canonical transformation.

The problem is obviously very important. However, the answer is known

only for very speci-al cases :

1) when E = R and E : du/3xj = 0 (j = 1,...,p), it is the classical theorem

of Hamilton -Jacobi-Lie ;

2) in the case E = ~ (considered as R2), U = ~n, , and E is the Cauchy-Riemann

equation, it is the Newlander-Nirenberg Theorem [4] . In these cases the procedure

to check the equivalence is surprising simple : we only have to check rank con-

ditions and closedness under the bracket operation.

It is desirable to have an answer in the case when E has constant coefficients

or more generally when U is homogeneous under an action of a Lie group G and E is

invariant under the action of G. However, very little seems to be known in these

cases, except the Frobenius theorem for completely integrable systems.When E is

the defining equation of a local Lie group, the third fundamental theorem of Lie

is the answer .

In the case of infinite pseudo-groups of Lie instead of local Lie groups, or more

generally for Lie equations, a great deal of work has been done recently. In par-

ticular in the transitive case and in the real analytic category, the situation
00

seems to be fairly well understood. As for the study on the relation between C

category and formal category in the above context, we may mention a monumental work

of H.Goldschmidt and D.C. Spencer [3].

A problem which falls in the same category is the equivalence problem of i

Riemannian geometry : to see if a given Riemann manifold is locally isometric to a

euclidean space we check the vanishing of its curvature.
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We have a similar answer for conformal classes of Riemannian manifolds.

Note that, in the above cases 1) and 2), nothing like the curvature makes its

apparance c We may say that the curvature is always zero in these cases.

Today we consider the case of the tangential Cauchy Riemann equation.

This is the case E = 4l and

is a real hypersurface of codimensionl . To define E we may regard it as a system

of partial differential equations with complex coefficients. Denoting by v

(resp. z = t z 1 . 0, general complex valued function on U (resp. a general ele-

ment in 4l~) , we definie E by

ifor any Z = aj a /a . which is tangential to U. The set of such Z is a subbundle 1,§J ’

say E, of the complex tangent bundle (CTU. Thus, instead of the system of partial

differential equations E,we may speak of the subbundle E. Obviously E satisfies the

following conditions :

1) E n E - 101 and the fiber dimension over 41 of the quotient bundle

2) if X and Y are sections of E, so is [X,Y]

We call anyE satisfying the above two conditions a CR-structure. Such an E has an

invariant which is absent in the above cases 1) and 2). Namely, pick a supplementary

real vector field S on U so Write for sections X, Y of E.

see easily that C (X ~ X) is a hermitian quadratic form defined on fibers of E.

It is called the Levi-form of E. C may depend on S. However, it is defined up to

multiplications by non-vanishing real valued functions. We assume that C is non-

degenerate. The simplest such E is the case when U is the a non-degenerate real

quadric in ~n. In this case, we call it flat. Our problem is to find a constructive

procedure to decide whether a given CR-structure with non-degenerate Levi form is loc

ly isomorphic to a flat CR-.structure.
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We wish to point out here an analogy with the conformal hermitian structures .

In this case, a conformal class of hermitian metrics is given on each tangent vector

space. In our case, it is given only on E. However, we can exploit the analogy. In

fact pursuing this analogy, E. Cartan introduced the curvature for CR-structures

with non-degenerate Levi-form (in the case dim U = 3) and showed that the vanishing

of the curvature is equivalent to its flatness [1]. In this respect, "pseudo-conformal

structure" used by E. Cartan is more indicative than the modern "CR-structure".

In the language of differential geometry the curvature is obtained by

constructing a Cartan connection. However, in our case there is no unique Cartan connection.

We have to select one by imposing conditions for its curvature. The unique

Cartan connection thus obtained is called normal. The construction of the normal

Cartan connection for general dimension was first achieved by N. Tanaka [5]. Indepen-

dently, S.S. Chern and J.K. Moser gave a different construction [2]. We wish to

outline here another approach.

Let us first recall the definition of Cartan connections. We fix a Lie

group G and its closed subgroup H. Denote by Cl (resp. by1) the Lie algebra of G

(resp. of H) . A Cartan connection in (G , I H) of a manifold M is a principal bundle P with

structure group H together with a - valued Paffian c~ form on P satisfying the follo w-

ing conditions :

(i) for each X E induces an isomorphism of T x P with

(ii) if we identify a fiber of P with H by a chart of P, w restricted to H is

the left invariant Maurer-Cartan form ;

(iii) if R h denotes the right action of H on 

In our case, we consider the following G : we denote by Q the quadric in 0n given by

where (h jk) is a non-singular hermitian matrix. The CR-structure on Q extends to

the one-point compactification Q of q. G is the component of the automorphism group

of the CR-structure E8 on Q.
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H is the isotropy group at theorigin 0. If we write elements 

, G is isomorphic to the quotient by the center of

the subgroup leaving the hermitian form

A

invariant. Note that E Q

induces an isomorphism of G/H onto Q. Hence it induces if/$" - T Q - T 0 Q -t-’ 0’ U

Thus we have an .isomorphism :

The fiber of the CR-structure E Q over 0 is a vector subspace of CT OQ.

Let E be a CR.structure over a manifold M. We say that a Cartan connection

(P, w) of M in (G, H) is a Cartan connection for E, if for each X c P the inverse

image of EQ in C T0Q under the map

(where arrows are w, the projection + the map (6)) projects into E. Thus E is

actually given by (P, w).

To give an idea of our construction,let us outline our construction in

the case of Riemannian manifold of dimension n. In this case the group G is the

group of euclidean motions of]R n and H is its isotropy group at the origin. In

the case of the flat Rignamian manifoldlRn, P is by definition equal to G and the
projection P is the projection G + G/H where G/H is identified with the bundle

of orthonormal coframes of IR n by G3 g + ge, where e is the standard cobase of;~Rn.
c~ is by definition the left invariant Mauer-Cartan form. Thus Cartan connection is

defined for I!R which we denote by (P n, W n) . For a Riemannian manifold M, we take P
to be the bundle of orthonormal coframes of M. We wish to transplant to

P. Namely, we take for each p E M an osculating chart

where M’ is an open neighborhood of p. It is a chart such that the Riemannian metric

of M and the metric induced by the map from]Rn agree at p up to order 2. We check

easily that such chart exists.. Then i’P IR n and P are sub-bundles of the bundle of

coframes of M. Thanks to the osculating property of i, i*P n and P agree at all
- 

. lI1

points over p and they also have the same tangent space.
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Therefore T P -~- 4is well defined for any X c P over p. We then show
R x o the 

’

n) is independent of the choice of osculating i, which we define to .

Since is now defined uniquely for any X over P, we have w : : TP + 1. This our
Cartan connection for M.

In the case of CR.structures with non-degenerate Levi-form

that we use the automorphisznG of Q (where (hj in (4) is taken to be equivalent to’ 

J-
the Levi-form) instead of the group of euclidean motions. Then the above construc-

tion makes sense once we find correct notions which replace the notions of coframes,

orthonormal coframes, and of osculating charts. To define these notions we fix
00 00

some notations. Let V be a C vector bundle over M. Then the vector space C (M,V)
00

of C sections of V over M is a module over the ring of (functions on M. Let I be
00

a submodule of C (M,V). we set

Thus V/I is a module over C (M) . For a point p in M we denote by lfp the ideal of the
point p in M. Then ’I1¿R C (M,V) is a submodule of C (M,V) . We also set

p

is also a finite dimensional vector space. V/I has the obvious functorial
p 

p

properties.

Let Q be the quadric defined by (4) . We have the CR-structure EQ over
Q. We set

SQ is a vector bundle over Q. By a hyper-coframe of a manifold M at p, we mean a

pair of linear maps (a,b) where

is an isomorphism

such that there is a map (M,P) ~ (Q,0) which induces a and b.

The above replaces coframes. To define the notion which plays the role of ortho-

normal coframes, we set



XVII.6

for a CR-structure E over M. Since SM is a quotient of TM,

and hence

In order to make our bundle connected we also introduce orientations on the vector

bundleSSQ and SM in such a way it is consistent with the equivalence of the Levi-form

of EQ and E. We say a hyper-coframe (a,b) is a CR-hyper-coframe if

The set of hyper-coframes (resp. of CR-hyper-coframes) forms a bundle HM (resp. PE)
over M. PEis the bundle on which we construct the normal Cartan connection.
A diffeomorphism h : M -~ N obviously induces

[h] from HN to HM.
A diffeomorphism f : (Q’,0) + (M’,p),where Q’ (resp. M’) is a neighborhood of 0

(resp. of P) in Q (resp. in M) is called admissible at P if (when considered as

p , ~h~P~ c HQ )

, where ( ) denotes the fiber over p ;
P

EQ
for all X E P over 0.

To see the nature of an admissible map, note that SQ (resp. SM) is defined by

where 6 (resp. 8) is a real Pfaffian form on Q (resp. on M). Here we shrunk M if

necessary. Then we can pickcomplex Pfaffian forms on Q
n_ 

Q Q
(resp. , ... , on M) such that E Q (resp. E) is defined by the equations :

Obviously, form a base of complex Pfaffian forms

on Q. Similarly for 8, wj, 

Hence for f : (Q,0) + (M,p) we can set
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When 0, 8 Q are chosen properly (depending on the orientation) , we have the following

proposition : f is admissible at p if and only if

Note that Q, being def ined by ( 4) , has a g lobal chart ... ,z n 1, x) where

x = ~ 2n . Hence a function F on Q is considered as F tz 1, " . ,zn 1, . x) . We give a

weight to a horogenous polynomial F by assigning the weight 1

(resp. 2) to z1, ... , zn-1 (resp. to x) . We say F is of type (s,t) when it is of that

type in We define an operator D by

We also set

We say that f : (Q,0) ~ (M,p), admissible at p, is normal at p if the following

conditions are satified :

By using a normal admissible map instead of the osculating chart we can define a

unique Cartan connection.

This is our definition of the normal Cartan connection for the CR-structure E

with a non-degenerate Levi-form. Now the curvature ~E of E is defined by

where the bracket is defined in terms of the bracket in the Lie algebra £f .
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