@article{SEDP_1984-1985____A1_0, author = {Taira, K.}, title = {Le principe du maximum et l'hypoellipticit\'e globale}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:1}, pages = {1--10}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1984-1985}, mrnumber = {819767}, zbl = {0582.35023}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1984-1985____A1_0/} }
TY - JOUR AU - Taira, K. TI - Le principe du maximum et l'hypoellipticité globale JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:1 PY - 1984-1985 SP - 1 EP - 10 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1984-1985____A1_0/ LA - fr ID - SEDP_1984-1985____A1_0 ER -
%0 Journal Article %A Taira, K. %T Le principe du maximum et l'hypoellipticité globale %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:1 %D 1984-1985 %P 1-10 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1984-1985____A1_0/ %G fr %F SEDP_1984-1985____A1_0
Taira, K. Le principe du maximum et l'hypoellipticité globale. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1984-1985), Exposé no. 1, 10 p. http://archive.numdam.org/item/SEDP_1984-1985____A1_0/
[1] The global hypoellipticity of a class of degenerate elliptic-parabolic operators, à paraître. | Zbl
:[2] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304. | Numdam | MR | Zbl
:[3] On a criterion for hypoellipticity, Math. USSR Sb. 14 (1971), 15-45. | Zbl
:[4] Subelliptic eigenvalue problems, Conference on Harmonic Analysis W. Beckner et al. ed. Wadsworth (1981), 590-606. | MR | Zbl
and :[5] An example of a globally hypo-elliptic operator, Hokkaido Math. J. 12 (1983), 293-297. | MR | Zbl
and :[6] Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114. | MR | Zbl
and :[7] A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970), 213-229. | MR | Zbl
:[8] Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. | MR | Zbl
:[9] Stochastic differential equations and diffusion processes, Kodansha, Tokyo and North-Holland, Amsterdam-Oxford - New-York, 1981. | MR | Zbl
and :[10] Second order equations with nonnegative characteristic form, Amer. Math. Soc., Providence, Rhode Island and Plenum Press, New-York, 1973. | MR
and :[11] The sharp maximum principle for nonlinear inequalities, Indiana Univ. Math. J. 21 (1971), 227-248. | MR | Zbl
:[12] On the support of diffusion processes with applications to the strong maximum principle, Proc. of 6-th Berkeley Symp. of Prob. and Math. Stat. Vol.III (1972), 333-359. | MR | Zbl
and :[13] On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651-713. | MR | Zbl
and :[14] Diffusion processes and partial differential equations, Academic Press, New-York, à paraître. | MR | Zbl
: