SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

C. GÉRARD

Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes

Séminaire Équations aux dérivées partielles (Polytechnique) (1985-1986), exp. nº 14, p. 1-9

http://www.numdam.org/item?id=SEDP 1985-1986 A14 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1985-1986, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES 1985 - 1986

ASYMPTOTIQUE DES POLES DE LA MATRICE DE SCATTERING POUR DEUX OBSTACLES STRICTEMENT CONVEXES.

par C. GERARD

§ O. INTRODUCTION.

On s'intéresse aux pôles de la matrice de scattering pour un obstacle formé de deux convexes disjoints à bord C^∞ : $\Omega = \Omega_1 \cup \Omega_2$ dans \mathbb{R}^{n+1} avec n pair, $n \geq 2$.

§ I. CARACTERISATION DES POLES.

Une caractérisation classique des pôles de la matrice de scattering est la suivante : (voir [L.P])

On considère la résolvante $R(\lambda)$ du problème suivant :

(1.0)
$$\begin{cases} \Delta u + \lambda^2 u = f & \text{dans } \mathbb{R}^{n+1} \setminus \Omega \\ u_{\mid \Gamma} = 0 \end{cases}$$

pour $Im \lambda < 0$

Si on considère $R(\lambda)$ comme opérant de $C_0^\infty(\mathbb{R}^{n+1}\setminus\Omega)$ dans $C^\infty(\mathbb{R}^{n+1}\setminus\Omega)$, on peut étendre $R(\lambda)$ de façon méromorphe dans $\mathrm{Im}\lambda\geqslant 0$, avec des pôles qui sont exactement avec multiplicité ceux de la matrice de scattering. Ceci veut dire que si $K(x,y,\lambda)$ désigne le noyau de Schwartz de $R(\lambda)$, $K(x,y,\lambda)$ admet une extension dans $\mathrm{Im}\,\lambda\geqslant 0$ en une distribution méromorphe en λ . Une autre caractérisation consiste à utiliser la méthode du "complex scaling" . On considère la résolvante sortante libre du laplacien :

$$\begin{cases} \Delta u + \lambda^2 u = v & \text{définie par :} \\ u = R_o(\lambda)v = \int e^{-i\lambda |x-y|} P_n(|x-y|,\lambda) \ v(y) \ dy \end{cases}$$

où
$$P_n(r,\lambda) = c(n) \left(\frac{1}{r} \partial_r\right)^{(n-2)/2} \left(\frac{e}{r}\right)^{-i\lambda r} e^{i\lambda r}$$

où $P_n(r,\lambda)$ est équivalent à $\frac{C(n,\lambda)}{r^{n/2}}$ à l'infini. Soit $K_0(x,y,\lambda)$ le noyau de

Schwartz de $R_0(\lambda)$. Pour Im $\lambda > 0$, $R_0(\lambda)$ est bornée sur $L^2(\mathbb{R}^{n+1})$ car $K_0(x,y,\lambda)$ décroit exponentiellement en dehors de la diagonale. Par contre pour Im $\lambda = 0$, $R_0(\lambda)$ n'est plus bornée sur $L^2(\mathbb{R}^{n+1})$ mais on a les estimations suivantes sur la décroissance de u à l'infini :

$$\begin{cases} |u(r)| \le C r^{-n/2} \\ \left|\frac{\partial u}{\partial r} + i\lambda u\right| \le Cr^{-(n+1)/2} \end{cases}$$

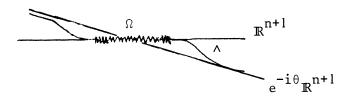
Ces conditions sont appelées conditions de radiation de Sommerfeld.

L'idée de la méthode du complex scaling consiste à prolonger holomorphiquement en $(\underline{x},\underline{y})$ le noyau $K_{\Omega}(x,y,\lambda)$.

Pour cela, on étend |x-y| par $((x-y)^2)^{1/2}$ et on restreint le noyau étendu à $e^{-i\theta}$ \mathbb{R}^{n+l} \times $e^{-i\theta}$ \mathbb{R}^{n+l} pour $\theta>0$.

En écrivant les nouvelles variables sous la forme $(e^{-i\theta}x, e^{-i\theta}y)$, le terme $e^{-i\lambda|x-y|}$ devient $e^{-i\lambda e^{-i\theta}|x-y|}$, qui est exponentiellement décroissant pour $\text{Im }\lambda>0$, $\text{Re }\lambda$ assez grand.

Pour traiter la résolvante avec obstacle, on remplace la variété $e^{-i\theta}\mathbb{R}^{n+l}$ par Λ où Λ est une déformation de \mathbb{R}^{n+l} égale à $e^{-i\theta}\mathbb{R}^{n+l}$ loin de Ω et à \mathbb{R}^{n+l} près de Ω .

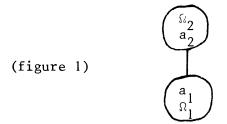


On peut alors utiliser la méthode des potentiels de double couche et la théorie de Fredholm pour montrer que la résolvante $R(\lambda)$ de (1.0) considérée comme opérateur sur $L^2(\Gamma)$ a une extension méromorphe dans ${\rm Im}\,\lambda \,\geqslant\, 0$ avec des pôles égaux à ceux de la matrice de scattering avec multiplicité. L'avantage de cette méthode est qu'on est de nouveau dans un cadre hilbertien.

§ II. RESULTAT PRINCIPAL.

On sait de façon générale que les pôles de la matrice de scattering sont associés à des rayons captifs.

Pour Ω on a un seul rayon C^{∞} captif $\gamma = [a_1, a_2]$. (voir fig.1)

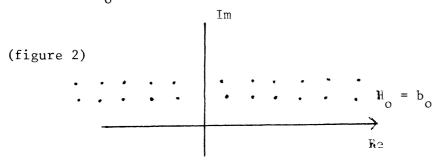


 γ correspond à un point fixe qui est $(a_1,0)\in T^*(\Gamma_1)$, pour l'application du billard $\chi: T^*(\Gamma_1) \to T^*(\Gamma_1)$ associée aux rayons réfléchis sur Γ_2 . Le fait que Γ_1 et Γ_2 soient strictement convexes entraine alors que $(a_1,0)$ est un point fixe de type hyperbolique, c'est à dire que $D_\chi(a_1,0)$ n'a que des valeurs propres réelles différentes de ± 1 (voir [P])

Soient $(v_1...v_n)$ les valeurs propres plus grandes que 1 de $D\chi(a_1,0)$, $d = dist(\Omega_1,\Omega_2)$ et $b_0 = (v_1...v_n)^{-1/2}$

[B.G.R.] ont introduit les "pseudopôles" définis de la manière suivante : pour $\alpha \in \mathbb{N}^n$ on note $K_{\alpha} = \sqrt{-\alpha} \times b_{0}$. Soit K_{0} une des valeurs prises par les K_{α} . On pose $J = \{\alpha \in \mathbb{N}^n \mid K_{\alpha} = K_{0}\}$ et N = card J. Les pseudopôles sont les $\lambda_{j} = -i \log \frac{o}{2d} + j \frac{\pi}{\alpha}$, $j \in \mathbb{Z}$ (voir figure 2). Pour une valeur K_{0} donnée, N est "la multiplicité" de la famille de pseudopôles

associée à K .



Pour chaque valeur de K_0 , on introduit des développements asymptotiques :

$$\lambda_{\ell}(j) = \lambda_{j} + \sum_{k=1}^{\infty} a_{k,\ell}(\lambda_{j})^{-k/2} a_{\ell} \text{ avec } 1 \leq \ell \leq a, a_{\ell} \in \mathbb{N}$$
.

qui correspondent à des développements asymptotiques en λ pour les valeurs propres d'une N \times N matrice dépendant de λ . Les exposants $\frac{1}{a_0}$ proviennent de développements de Puiseux dans le calcul de ces valeurs propres. Soit p $_{\varrho}$ \in 1N la multiplicité de $\lambda_{\varrho}(j)$, au sens asymptotique. On a alors le théorème suivant.

scattering pour Ω asymptotiques à $\lambda_{\mathfrak{g}}(j)$

Remarque : Si les $|\alpha|$ pour $\alpha \in J$ ont tous la même parité, on obtient des développements en puissances de $(\lambda_i)^{-1/a}\ell$. Ce phénomène apparaît aussi dans le cadre semi-classique. (voir [H.Sj]).

Le premier résultat dans cette direction a été obtenu par M. Ikawa [I] qui a démontré ce théorème pour la lère rangée de pôles (α = 0).

§ III. REDUCTION A UN PROBLEME SUR LE BORD D'UN OBSTACLE.

Pour i = 1,2 on note $H_{i,+}(\lambda)v$ la résolvante sortante de :

(3.i)
$$\begin{cases} (\Delta + \lambda^{2})u = 0 & \text{dans } \mathbb{R}^{n+1} \setminus \Omega_{i} & \text{où } \Gamma_{i} = \partial \Omega_{i}, \Gamma = \partial \Omega \\ u_{\mid \Gamma_{i}} = v \end{cases}$$

Si on se limite à $\lambda \in D$, où D est un domaine de la forme D = $\{z \in \mathbb{C} | | \text{Im } z | \leq c_0, | \text{Re } z | \geq c_1 \}$, pour c_1 assez grand, $H_{i,+}(\lambda)$ est défini, car Ω , est non captif, en appliquant un théorème de Melrose ([M]).

On note :
$$\begin{cases} H_1(\lambda) = H_{1,+}(\lambda)|_{\Gamma_2} \\ H_2(\lambda) = H_{2,+}(\lambda)|_{\Gamma_1} \end{cases}$$

et $M(\lambda) = H_2(\lambda) \cdot H_1(\lambda)$ qui envoie $C^{\infty}(\Gamma_1)$ dans $C^{\infty}(\Gamma_1)$.

Si $H_{\perp}(\lambda)$ est la résolvante sortante de :

(3.3)
$$\begin{cases} (\Delta + \lambda^2) u = 0 \text{ dans } \mathbb{R}^{n+1} \setminus \Omega \\ u_{\mid \Gamma} = v \end{cases}$$

on vérifie que si $v \in C^{\infty}(\Gamma)$ $v = (v_1, v_2)$ avec $v_i \in C^{\infty}(\Gamma_i)$, on a :

$$\mathbf{H}_{+}(\lambda)\left(\mathbf{v}_{1},\mathbf{v}_{2}\right) = \left[\mathbf{H}_{1,+}(1-\mathbf{M})^{-1} - \mathbf{H}_{2,+}\mathbf{H}_{1}(1-\mathbf{M})^{-1}\right]\mathbf{v}_{1} + \left[\mathbf{H}_{2,+} + \left(\mathbf{H}_{2,+}\mathbf{H}_{1}-\mathbf{H}_{1,+}\right)(1-\mathbf{M})^{-1}\mathbf{H}_{2}\right]$$

Comme $H_{\perp}(\lambda)$ a exactement les mêmes pôles que $S(\lambda)$, on est ramené à étudier $\left(\text{ll-M}\left(\lambda\right)\right)^{-1}$. Pour celà, on va résoudre un "problème de Grushin" pour ll-M dans $L^2(\Gamma_1)$:

Plus précisément on vainverser de $L^2(\Gamma_1) \times \mathbb{C}^N$ dans $L^2(\Gamma_1) \times \mathbb{C}^N$ le problème suivant:

(3.4)
$$\begin{cases} (ll-M)u - R^{\dagger}c = f & \text{où } u, f \in L^{2}(\Gamma_{1}), c, d \in \mathbb{C}^{N} \\ R^{-}u = d \end{cases}$$

On prend les opérateurs de rang fini R et R de telle sorte que (3.4) soit inversible, c'est à dire : $-R^+(C^N)$ est transverse à Im(ll-M)

$$-R^{-}$$
 Ker($11-M$) est injectif.

L'inverse de (3.4) s'écrit sous la forme : $\xi = \begin{pmatrix} E & E^{+} \\ - & -+- \end{pmatrix}$

où $E^{+-}(\lambda)$ est une N × N matrice, et on a :

$$(11-M)^{-1} = E - E^{+}(E^{+-})^{-1}E^{-}$$

On est donc ramené à l'étude d'une matrice de dimension finie.

§ IV. APPROXIMATION MICROLOCALE DE $M(\lambda)$.

Dans un voisinage microlocal de (a,0) on va remplacer M(λ) par une approximation qui est un 0.1.F. à grand paramètre λ .

Pour cela, on construit des approximations de $\mathrm{H}_{1,+}$, $\mathrm{H}_{2,+}$ par l'optique géométrique :

on cherche un opérateur $\widetilde{\mathbf{H}}_{\mathbf{l}}$ qui vérifie

(4.1)
$$\left\{ \begin{array}{l} (\Delta + \lambda^2) \widetilde{H}_1 \mathbf{u} \in O(|\lambda|^{-\infty}) \\ \widetilde{H}_1 \mathbf{u}|_{\Gamma_1} = K_1 \mathbf{u} \end{array} \right.$$

où K_l est un opérateur pseudodifférentiel à grand paramètre qui tronque microlocalement près de (a_l,o) . On peut trouver \widetilde{H}_l sous la forme :

$$\widetilde{H}_{1}\mathbf{u}(\mathbf{x},\lambda) = \left(\frac{\lambda}{2\pi}\right)^{n} \int_{e}^{-i\lambda(\psi_{1}(\mathbf{x},\theta)-\mathbf{y}.\theta)} a_{1}(\mathbf{x},\mathbf{y},\theta,\lambda)\mathbf{u}(\mathbf{y},\lambda)d\mathbf{y} d\theta$$

En appliquant $(\Delta + \lambda^2)$ sous l'intégrale, on obtient classiquement l'équation eikonale : $|\nabla \psi_1|^2 = 1$ et les équations de transport :

La 2ème étape consiste à utiliser le calcul des O.I.F. pour simplifier H .

Si on note Λ_+ et Λ_- les variétés stables sortantes et entrantes de χ en $(a_1,0)$ on peut trouver un changement de coordonnées symplectiques noté F qui envoie Λ_+ sur $\{\xi=0\}$ et Λ sur $\{x=0\}$.

On quantifie F par un O.I.F. F et on note F^{-1} un inverse microlocal de F près de $(a_1,0)$.

On considère alors $M_1 = FHF^{-1}$.

On peut alors montrer que $\mathbf{M}_{\hat{\mathbf{l}}}$ s'écrit sous la forme :

$$M_1 u(x,\lambda) = (\frac{\lambda}{2\pi})^n \int_{e}^{-i\lambda (\varphi(x,\theta) - y \cdot \theta + 2d)} b(x,y,\theta,\lambda) u(y,\lambda) dy d\theta$$

avec

(4.2)
$$\begin{cases} -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1} \text{ est sous forme de Jordan et a} \\ -\varphi(x,\theta) = A^{-1}x \cdot \theta + O(x^3, \theta^3) & A^{-1$$

le terme 2d dans la phase provient d'une action le long du rayon γ . On remplace maintenant M par l'opérateur modéle M :

§ V. RESOLUTION D'UN PROBLEME DE GRUSHIN POUR 11-M

On a :
$$M_o u(x,\lambda) = b_o u(Ax^{-1},\lambda) \times e^{-i\lambda 2d}$$
.

On supposera dans la suite que A^{-1} est diagonale, le cas général se traitant de la même façon.

Les vecteurs propres de M $_{0}$ sont les monômes x $^{\alpha}$ avec les valeurs propres b $_{0}e^{-i\,\lambda 2d}\,\,_{\nu}^{-\alpha}$, et on remarque ici que les pseudopôles sont les λ tels que l $_{0}e^{-i\,\lambda 2d}\,\,_{0}e^{-\alpha}=0$.

On fixe une valeur de $K_{_{\mathrm{O}}}$, c'est à dire une rangée de pseudopôles.

Si on veut résoudre ($\| -M_0 \|_0$) u = f pour $f \in C^\infty(U)$ où U est un petit voisinage de 0 on peut faire le développement de Taylor de f à un ordre k assez grand :

$$f(x) = \sum_{|\alpha| < k} x^{\alpha} \frac{D^{\alpha}}{\alpha!} f(0) + f_{k}(x) .$$

Si λ varie dans un voisinage des pseudopôles associés à K_0 , noté D, on peut inverser ($ll-M_0$) sur les monômes x^α pour $\alpha \notin J$ (voir § II), et on peut inverser ($ll-M_0$) sur $f_k(x)$ si k est assez grand.

On peut donc résoudre le problème de Grushin :

(5.1)
$$\begin{cases} (11-M_{o}) u = R_{o}^{+}c + f & \text{avec} : R_{o}^{+}c = \sum_{\alpha \in J} \frac{x^{\alpha}C}{\alpha!}, R_{o}^{-}u = (D_{x}^{\alpha}u(0))_{\alpha \in J} \\ R_{o}^{-}u = d & \\ \end{pmatrix}$$

L'inverse est de la forme
$$\xi_0 = \begin{pmatrix} E_0 & E_0^+ \\ E_0^- & E_0^+ \end{pmatrix}$$
 avec $E_0^{+-} = (1 - e^{-i\lambda 2d} b_0 v^{-\alpha}) ll_N$.

On choisit maintenant un espace de Hilbert où ces arguments restent valables, c'est à dire les polynômes de degré inférieur à k, et dans lequel on peut appliquer la formule de Taylor à l'ordre k.

Pour cela on prend un espace de Sobolev à poids :

$$H^{p} = \{u \in D'(u) \mid (1+|\lambda|x^{2})^{-p/2+|\alpha|/2} |\lambda|^{|\alpha|/2} D_{x}^{\alpha} u \in L^{2}(u) \quad \forall |\alpha| \leq p \}$$

et on a:

(5.2)
$$\|\xi_{0}\|_{\mathcal{L}(H^{p}\times\mathbb{C}^{N},H^{p}\times\mathbb{C}^{N})} \leq C_{p}, \quad \forall \lambda \in D.$$

\$ VI. RESOLUTION D'UN PROBLEME DE GRUSHIN POUR \texttt{M}_1 .

Comme on peut perturber un problème de Grushin, l'étape essentielle est de montrer que M_1 - M_0 est petit dans $\mathcal{L}(H^p,H^p)$.

 M_1-M_0 est la somme de deux opérateurs R_1 et R_2 :

on a:
$$R_1 u(x,\lambda) = \left(\frac{\lambda}{2\pi}\right)^n \int e^{-i\lambda(\phi(x,\theta)-y,\theta+2d)} (xb_x + y. b_y + \theta.b_\theta) u(y,\lambda) dy d\theta$$

où b , b , b sont des symboles d'ordre 0 . R correspond à l'erreur commise sur l'amplitude.

$$R_{2}u(x,\lambda) = \int_{0}^{1} dt \left(\frac{\lambda}{2\pi}\right)^{n} \int_{0}^{-i\lambda} \left(\phi_{t}(x,\theta) - y \cdot \theta + 2d\right) \times \left(A_{x}^{-1} \cdot \theta - \phi(x,\theta)\right) b_{0}u(y,\lambda) dy d\theta$$

avec : $\phi_t = t\phi(x,\theta) + (1-t)A_x^{-1}.\theta$. R_2 correspond à l'erreur commise sur l'amplitude.

On coupe alors l'espace de phase dans deux zones :

a)
$$|x| + |\xi| \le |\lambda|^{-\rho}$$
 avec $\frac{1}{3} < \rho < 1/2$

Dans cette zone, l'amplitude de R₁ est $O(|\lambda|^{-\rho})$, et celle de R₂ est $O(|\lambda|^{1-3\rho})$ d'après (4.2).

On peut alors montrer que dans $\{(x,\xi) \mid |x|+|\xi| \le C \mid \lambda \mid^{-\rho} \}$ on a :

$$\|\mathbf{M}_{l} - \mathbf{M}_{o}\|_{\mathcal{L}(\mathbf{H}^{p}, \mathbf{H}^{p})} \leq |\lambda|^{-\epsilon_{o}} \text{ avec } \epsilon_{o} > 0.$$

b)
$$|\mathbf{x}| \ge |\lambda|^{-\rho}$$
 $|\xi| \ge |\lambda|^{-\rho}$

Dans cette zone on peut définir la norme dans H^p avec des opérateurs pseudo-différentiels avec des symboles du type :

$$m(x,\xi,\lambda) = \left(\frac{1}{(1+|\lambda|x^2)^{1/2}} + (1+|\lambda|\xi^2)^{1/2}\right)^p, \text{ qui sont dans des classes}$$

 $S_{\rho,1/2}^{p}$ ou $S_{1/2,\rho}^{p}$. On peut alors montrer que

$$\|\,\mathbf{M}_l - \mathbf{M}_0\|_{\mathcal{L}(\mathbf{H}^p,\mathbf{H}^p)} \leqslant \mathbf{C} \times \mathbf{k}_0^{-p} \quad \text{avec } \mathbf{k}_0 > 1 \text{ , car } \mathbf{m}(\mathbf{x},\xi,\lambda) \text{ décroit strictement par } \mathbf{k}_0 = \mathbf{k}_0$$

l'action de χ , en dehors d'un voisinage de (0,0).

On peut alors inverser dans ${\tt H}^p \, \times \, {\tt C}^N$ le problème de Grushin :

6.1
$$\begin{cases} (11 - M_1)u = R_0^+ c + f \\ R_0^- u = d \end{cases}$$

et on montre que $E_1^{+-}(\lambda) = E_0^{+-}(\lambda) + R(\lambda)$ où $R(\lambda)$ a un développement asymptotique $R(\lambda) \sim \sum_{n \geq 1} K_n (e^{-i\lambda 2d}) \lambda^{-n/2}$.

Les développements $\lambda_{\ell}(j)$ sont les développements pour les solutions de det $E_1^{+-}(\lambda)$ = 0 .

§ VII. FIN DE LA PREUVE.

Il reste à montrer qu'on peut résoudre un problème de Grushin pour ll-M. On introduit pour cela une notion d'ensemble de fréquence pour des fonctions $u(x,\lambda)$, analogue à celle de [G.S], et notée $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

(7.1)
$$\begin{cases} (11-M)u = R^{+}c+f \\ R^{-}u = d \end{cases}$$

où R⁺ et R⁻ sont construits de façon analogue à R_o⁺ et R_o⁻ , avec la propriété suivante : - Si WF u ne rencontre pas un petit voisinage de $(a_1,0)$, alors R^- u $\in O(|\lambda|^{-\infty})$

-
$$WF(R^{\dagger}c)$$
 est inclus dans un petit voisinage de $(a_1,0)$.

On peut alors résoudre (7.1) en utilisant les résultats du § 6 et la façon dont M agit sur WF. On obtient $E^{+-}(\lambda) = E_1^{+-}(\lambda) + O(|\lambda|^{-\infty})$, ce qui permet de démontrer le théorème.

BIBLIOGRAPHIE:

- [V] B.R. Vainberg: On the analytical properties of the resolvent for a certain class of operators pencils. Math U.S.S.R. Sbornik Vol 6 (1968) 241-273.
- [P] V. Petkov: Exposé au Séminaire Goulaouic-Meyer-Schwartz 82-83.
- [H.Sj] B. Helffer, J. Sjöstrand: Multiple wells in the semi-classical limit I Com. in P.D.E. 9 (4) (1984), 337-408.
- [I] M. Ikawa : Exposé au séminaire de Saint-Jean de Monts 1985.
- [M] R.B. Melrose: Singularities and energy decay in acoustical scattering Duke Mathematical Journal vol.46 (1979) 43-59.

- [B.G.R] C. Bardos, J.C. Guillot, J. Ralston: La relation de Poisson pour l'équation des ondes dans un ouvert non borné; Application à la théorie de la diffusion Com. in P.D.E.7 (8) (1982) 905-958.
- [G] C. Gérard : Développements asymptotiques pour les pôles de la matrice de scattering pour deux obstacles strictement convexes.

 A paraître.
- [L.P] P.D. Lax, R. Phillips: Scattering theory Academic Press.

