SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE ### M. S. BAOUENDI L. P. ROTHSCHILD #### CR mappings between real hypersurfaces in complex space Séminaire Équations aux dérivées partielles (Polytechnique) (1987-1988), exp. nº 18, p. 1-4 http://www.numdam.org/item?id=SEDP 1987-1988 A18 0> © Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1987-1988, tous droits réservés. L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. $CENTRE \ DE \ MATHEMATIQUES$ Unité associée au C.N.R.S. nº 169 ECOLE POLYTECHNIQUE F-91128 PALAISEAU Cedex (France) Tél. (1) 69.41.82.00 Télex ECOLEX 691.596 F Séminaire 1987-1988 ÉQUATIONS AUX DÉRIVÉES PARTIELLES ## CR MAPPINGS BETWEEN REAL HYPERSURFACES IN COMPLEX SPACE. M.S. BAOUENDI L.P. ROTHSCHILD Exposé n°XVIII 24 Novembre 1987 Let M be (a germ) of a smooth real hypersurface in \mathbb{C}^{n+1} containing the origin defined by $\rho(Z,\bar{Z})=0$, where ρ is a smooth real valued function satisfying $\rho(0,0)=0,\ d\rho(0)\neq 0$. We may assume $\frac{\partial \rho}{\partial Z_{n+1}}(0)\neq 0$. By a CR function h defined on M we mean a germ of a smooth function h at 0 satisfying $L_jh=0,\ j=1,\ldots,n$, with $$L_{j} = \frac{\partial}{\partial \bar{Z}_{j}} - \frac{\rho_{\bar{Z}_{j}}(Z, \bar{Z})}{\rho_{\bar{Z}_{n+1}}(Z, \bar{Z})} \frac{\partial}{\partial \bar{Z}_{n+1}}.$$ If M' is another hypersurface of \mathbb{C}^{n+1} , a smooth mapping $H: M \to M'$, H(0) = 0, is called CR if $H = (h_1, \ldots, h_{n+1})$, where the h'_js are CR functions defined on M. We shall give some local geometric and analytic properties of such mappings. We refer to [4] and [5] for complete details. If M is real analytic, after a holomorphic change of coordinates we can assume that (1) $$\rho(Z,0) = \alpha(Z)Z_{n+1} \ , \ \alpha(0) \neq 0.$$ If M is only smooth such a change of variables can be done formally (i.e. in formal power series of Z). If (1) is satisfied we say that Z_{n+1} is a **transversal** (holomorphic or formal) coordinate for M. If $Z' = (Z'_1, \ldots, Z'_{n+1})$ are coordinates in \mathbb{C}^{n+1} such that Z'_{n+1} is transversal to M', and if $H = (h_1, \ldots, h_{n+1})$ is a CR map from M to M' given by $Z'_i = h_i(Z)$, for $Z \in M$, we say that h_{n+1} is a **transversal component** of H. If j is a CR function defined on M, we associate to j a formal power series J(Z), $Z=(Z_1,\ldots,Z_{n+1})$, such that the Taylor series of j at 0 coincides with $J(Z)_{|M}$. If Z_{n+1} is transversal to M, we write (z,w) instead of Z (i.e. $w=Z_{n+1}$), $z\in \mathbb{C}^n$, $w\in \mathbb{C}$. Similarly if h_{n+1} is a transversal component of H, we write $H=(f,g), f=(f_1,\ldots,f_n)$ (i.e. $h_j=f_j, 1\leq j\leq n, \ h_{n+1}=g$), and $F_j(z,w), \ G(z,w)$ the associated formal power series. It follows from (1) that $$(2) G(z,w) = w G_1(z,w),$$ where $G_1(z, w)$ is another power series. If H is a CR mapping as above then it is said to be of finite multiplicity if (3) $$\dim_{\mathbf{C}} \mathcal{O}[[z]]/(F(z,0)) < \infty,$$ where $\mathcal{O}[[z]]$ is the ring of formal power series in n indeterminates z_1, \ldots, z_n and (F(z,0)) is the ideal generated by $(F_1(z,0),\ldots,F_n(z,0))$. The number given by the left hand side of (3) is called the **multiplicity** of H at 0. As in Baouendi-Jacobowitz-Treves [3] in the real analytic case, and D'Angelo [1] in the smooth case, we say that M is essentially finite at 0 if (4) $$\dim_{\mathbf{C}} \mathcal{O}[[z]]/(a_{\alpha}(z)) < \infty,$$ with $\rho(z,0,\zeta,0) = \sum_{\alpha} a_{\alpha}(z).\zeta^{\alpha}$, and $(a_{\alpha}(z))$ the ideal generated by the power series $a_{\alpha}(z)$ for all $\alpha \in \mathbb{Z}_{+}^{n}$. Note that it follows from (1) that $a_{\alpha}(0) = 0$. The number given by the left hand side of (4) is called the **essential type** of M at 0 and is denoted by ess. type ${}_{0}M$. We are now ready to state our main results. **Theorem 1.**— Let $H: M \to M'$ be a smooth CR mapping defined near 0, with M and M' C^{∞} hypersurfaces in \mathbb{C}^{n+1} . Let w be any (formal) transversal coordinate for M and G any (formal) transversal coordinate of H. Assume that M is essentially finite at 0. - (i) If $G \equiv 0$ then either H is not of finite multiplicity at 0, or M' is not essentially finite at 0. - (ii) If $G \not\equiv 0$ then $\frac{\partial G}{\partial w}(0) \not\equiv 0$, H is of finite multiplicity and M' is essentially finite. In addition, if M and M' are real analytic and H is holomorphic, then $G \not\equiv 0$ if and only if H maps any neighborhood of 0 in M onto a neighborhood of 0 in M'. **Theorem 2.**— Let $H: M \to M'$ be a smooth CR map if, either M is essentially finite and $G \not\equiv 0$, or M' is essentially finite and H of finite multiplicity then (5) $$ess. \ type_0M = (mult_0H) \times (ess. \ type_0M'),$$ with all three integers in (5) being finite. The proofs of Theorems 1 and 2 could be found in [4] and [5]. Several tools of commutative algebra such as the Nullstellensatz and Nakayama's lemma are used in these proofs. If $M, M' \subset \mathbb{C}^{n+1}$ are real analytic and $H: M \to M'$ is a smooth CR map, we are interested in the following question: when is H the restriction of a (local) holomorphic mapping in \mathbb{C}^{n+1} ? Several results could be found in the literature starting with Lewy [9] and Pincuk [10] when M and M' are strictly pseudoconvex and H is a diffeomorphism. Recent results closely related to ours (Theorem 3) have been independently proved by Diederich and Fornaess [8]. Before stating our extension results we need to introduce another definition. If $H = (f_1, \ldots, f_n, g)$ is a CR map as above, with g a transversal imponent, and if (z, w) are coordinates for M such that w is transversal to M, we say that H is **totally degenerate** if (6) $$\det\left(\frac{\partial F_j}{\partial z_k}(z,0)\right) = 0 ,$$ i.e. the formal power series defined by the left hand side of (6) is 0. We have the following result. **Theorem 3.**— Let $H: M \to M'$ be a smooth CR map, H(0) = 0, where M and M' are real analytic hypersurfaces in \mathbb{C}^{n+1} , and g a transversal CR component. Then H extends holomorphically to a neighborhood of 0 in \mathbb{C}^{n+1} if any of the following conditions holds: - (i) M is essentially finite and g is not flat at 0. - (ii) M' is essentially finite and H is of finite multiplicity at 0. - (iii) M' is essentially finite and H is not totally degenerate at 0. Note that it follows from Theorems 1 and 2 that (i) \Leftrightarrow (ii). We can also show that (i) and (ii) imply (iii). However condition (iii) is weaker than (i) and (ii) as is shown by the following example. Let M and M' be embedded in \mathbb{C}^3 given by $M = \{(z, w) : \text{Im } w = |z_1|^2 + |z_1z_2|^2\}$, and $M' = \{(z', w') : \text{Im } w' = |z'_1|^2 + |z'_2|^2\}$, and $H = (f_1, f_2, g)$ with $f_1(z, w) = z_1$, $f_2(z, w) = z_1z_2$ and g = w. Here M' is essentially finite, M is of finite type (but not essentially finite), H is not totally degenerate but not of finite multiplicity at 0. When n = 1, (i.e. $M, M' \subset \mathbb{C}^2$), then (i) \Leftrightarrow (ii) \Leftrightarrow (iii); in this case Theorem 3 was proved by the authors jointly with S. Bell [2]. Theorem 3 generalizes the result of [3] which deals with the diffeomorphic case. A complete proof could be found in [4] and [5]. We give some corollaries of Theorem 3. Corollary 1.— Let $\mathcal{H}: D \to D'$ be a proper holomorphic mapping between two bounded domains in \mathbb{C}^{n+1} with real analytic boundaries. If $\mathcal{H} \in C^{\infty}(\bar{D})$, and if at every $p \in \partial D$ a transversal component of \mathcal{H} at p is not flat at p, then \mathcal{H} extends as a proper holomorphic mapping from a neighborhood of \bar{D} into a neighborhood of \bar{D}' . Using the result of Bell-Catlin [6] and Diederich-Fornaess [7] Corollary 1 yields: Corollary 2.— If $\mathcal{H}: D \to D'$ is a proper holomorphic mapping between two bounded pseudoconvex domains in \mathbb{C}^{n+1} with real analytic boundaries, then the conclusion of Corollary 1 holds. Several other corollaries of Theorems 1, 2 and 3 could be found in [4] and [5]. #### References - [1] J. D'Angelo, The notion of formal essential finiteness for smooth real hypersurfaces, Indiana J. Math (to appear). - [2] M.S. Baouendi, S. Bell and L.P. Rothschild, Mappings of three dimensional CR manifolds and their holomorphic extension, (to appear) Duke J. Math. - [3] M.S. Baouendi, H. Jacobowitz and F. Treves, On the analyticity of CR mappings, Ann. Math. 122 (1985), 365-400. - [4] M.S. Baouendi and L.P. Rothschild, Germs of CR maps between real analytic hypersurfaces. (to appear) Inventiones Math. - [5] M.S. Baouendi and L.P. Rothschild, Geometric properties of smooth and holomorphic mappings between hypersurfaces in complex space (to appear). - [6] S. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings. Duke Math. J. 49 (1982), 385-396. - [7] K. Diederich and J.E. Fornaess, Boundary regularity of proper holomorphic mappings, Inventiones Math. 67 (1982), 363-384. - [8] K. Diederich and J.E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in \mathbb{C}^n , (preprint). - [9] H. Lewy, On the boundary behavior of holomorphic mapping, Acad. Naz. Lincei 35 (1977), 1-8. - [10] S.I. Pincuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 909-917. M.S. Baouendi Purdue University W. Lafayette, IN 47907 U.S.A. L.P. Rothschild University of California, San Diego La Jolla, CA 92093 U.S.A.