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Let M be (a germ) of a smooth real hypersurface in C"+’ containing the origin defined
by p(Z, Z) = 0, where p is a smooth real valued function satisfying = 0, 0.
We may assume 20132013(0) 0. By a CR function h defined on M we mean a germ of aa 

smooth function h at 0 satisfying = 0, j =1, ... , n, with

If .ll~’ is another hypersurface of a smooth mapping H : M -~ M’, H(O) = 0, is

called CR if H = ~hl, ... , where the hjs are functions defined on M. We shall

give some local geometric and analytic properties of such mappings. We refer to [4] and
[5] for complete details.

If M is real analytic, after a holomorphic change of coordinates we can assume that

If NI is only smooth such a change of variables can be done formally (i.e. in formal power
series of Z). If (1) is satisfied we say that Zn+i is a transversal (holomorphic or
formal) coordinate for M. If Z’ _ (Zl, ... , are coordinates in cn+I such that

is transversal to M’, and if H = ( hl, ... , hn+1) is a CR map from M to M’ given
by Z’ for Z E M, we say that is a transversal component of H.

If j is a C~ function defined on M, we associate to j a formal power series J(Z),
Z = (Zi , ... , such that the Taylor series of j at 0 coincides with If 
is transversal to we write (z, w) instead of Z (i.e. w = Zn+1 ), z E Cn, w E C.
Similarly if is a transversal component of H, we write H = ( f , g), f = ( f 1, ... , fn)
(i.e. hj = f ~,1  j  n, hn+i = g), and G(z, w) the associated formal power
series. It follows from (1) that

where is another power series.

If H is a CR mapping as above then it is said to be of finite multiplicity if

where 0[[z]] is the ring of formal power series in n indeterminates zi, - - - zn and (F(z, 0))
is the ideal generated by (~B(~,0),... ,~(~,0)). The number given by the left hand side
of (3) is called the multiplicity of H at 0.

As in Baouendi-Jacobowitz-Treves [3] in the real analytic case, and D’Angelo [1] in
the smooth case, we say that Al is essentially finite at 0 if

with p(z, 0, ~’, 0) _ EO’ and (aa(z)) the ideal generated by the power series 
for all a E Z+. Note that it follows from (1) that = 0. The number given by the left
hand side of (4) is called the essential type of M at 0 and is denoted by ess. type oM.

We are now ready to state our main results.
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Theorem 1. Let H : M --; M’ be a smooth CR ma.pping defined nea,r 0, with M and
M’ C°° hypersurfaces in Let 11) be any (formal transversal coordinate for M and
G any (formal) transversal coordinate of H. Assume that M is essentially finite at 0.
(i) If G - 0 then either H is not of finite multiplicity at 0, or M’ is not essentially finie

at 0.

(ii~ If G ~ 0 then 0, H is of finite multiplicity and M’ is essentially finite.

In addition, if M and IVI’ are real analytic and H is holomorphic, then 0 if and

only if H maps any neighborhood of 0 in M onto a neighborhood of 0 in M’.

Theorem 2. Let H : M -~ M’ be a smooth CR map if, either M is essentially finie
and 0, or M’ is essentially finite and H of finite multiplicity then

with all three integers in (5~ being finie.

The proofs of Theorems 1 and 2 could be found in [4] and [5]. Several tools of
commutative algebra such as the Nullstellensatz and Nakayama’s lemma are used in these
proofs.

If M, M’ C Cn+1 are real analytic and H : M -&#x3E; M’ is a smooth CR map, we are
interested in the following question : when is H the restriction of a (local) holomorphic
mapping in Several results could be found in the literature starting with Lewy [9]
and Pincuk [10] when M and iVl’ are strictly pseudoconvex and H is a diffeomorphism.
Recent results closely related to ours (Theorem 3) have been independently proved by
Diederich and Fornaess [8].

Before stating our extension results we need to introduce another definition. If H =

is a CR map as above, with 9 a transversal imponent, and if (z, w) are
coordinates for M such that w is transversal to M, we say that H is totally degenerate
if

i.e. the formal power series defined by the left hand side of (6) is 0. We have the following
result.

Theorem 3. Let H : M’ be a smooth CR map, = 0, where M and M’ are
real analytic hypersurfaces in and g a transversal CR component. Then H extends
holomorphically to a neighborhood of 0 in cn+1 if any of the following conditions holds :
(i~ M is essentially finite and g is not flat at 0.

(ii) M’ is essentially finite and H is of finite multiplicity at 0.

(iii) M’ is essentially finite and H is not totally degenerate at 0.
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Note that it follows from Theorems 1 and 2 that (i) ~ (ii). We can also show

that (i) and (ii) imply (iii). However condition (iii) is weaker than (i) and (ii) as is

shown by the following exa,mple. Let M and All’ be embedded in C3 given 
f ( Z,ZV) : Im w = IZ,12 + and ~l’ _ Im w’ = + Iz~12}, and H =
( f ~, f2, g) with = zi, = zlz2 and g = w. Here is essentially finite, M
is of finite type (but not essentially finite), H is not totally degenerate but not of finite
multiplicity at 0.

When n = 1, (i.e. C C~ ), then (i) O (ii) ~* (iii) ; in this case Theorem 3
was proved by the authors jointly with S. Bell [2]. Theorem 3 generalizes the result of [3]
which deals with the diffeomorphic case. A complete proof could be found in [4] and [5].

We give some corollaries of Theorem 3.

Corollary 1.- Let ?-~ : D -4 D’ be a proper holomorphic mapping between two bounded
domains in C’+’ with real analytic boundaries. If H E C°°(D), and if at every p E aD a
transversal component of ~-C at p is not at p, then H extends as a proper holomorphic
mapping from a neighborhood of D into a neighborhood of D’.

Using the result of Bell-Catlin [6] and Diederich-Fornaess [7] Corollary 1 yields :

Corollary 2. proper holomorphic mapping between two bounded
pseudoconvex domains in cn+l with real analytic boundaries, then the conclusion of Corol-
lary I holds.

Several other corollaries of Theorems 1, 2 and 3 could be found in [4] and [5].
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