Asymptotic completeness for N-body short-range quantum systems
Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990), Talk no. 9, 9 p.
@article{SEDP_1989-1990____A11_0,
     author = {Graf, G. M.},
     title = {Asymptotic completeness for $N$-body short-range quantum systems},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1989-1990},
     note = {talk:9},
     zbl = {0723.35060},
     mrnumber = {1073184},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1989-1990____A11_0}
}
Graf, G. M. Asymptotic completeness for $N$-body short-range quantum systems. Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990), Talk no. 9, 9 p. http://www.numdam.org/item/SEDP_1989-1990____A11_0/

[1] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators, Springer Verlag (1987) | MR 883643 | Zbl 0619.47005

[2] Deift, P., Simon, B.: A time-dependent approach to the completeness of multiparticle quantum systems. Commun. Pure Appl. Math. 30, 573-583 (1977) | MR 459397 | Zbl 0354.47004

[3] Derezińnski, J.: A new proof of the propagation theorem for N-body quantum systems. Commun. Math. Phys. 122, 203-231 (1989) | MR 994502 | Zbl 0677.47006

[4] Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering, I. Short-range potentials. Commun. Math. Phys. 61, 285-291 (1978) | MR 523013 | Zbl 0389.47005

[5] Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering, II. Singular and long-range potentials. Ann. Phys. 119, 117-132 (1979) | MR 535624 | Zbl 0408.47009

[6] Enss, V.: "Completeness of Three-Body Quantum Scattering", in Dynamics and Processes ed. by P. Blanchard, L. Streit, Lecture Notes in Mathematics, Vol. 1031, pp. 62-88, Springer Verlag (1983) | MR 733643 | Zbl 0531.47009

[7] Enss, V.: "Introduction to asymptotic observables for multi-particle quantum scattering", in Schrödinger Operators, Aarhus 1985, ed. by E. Balslev, Lecture Notes in Mathematics, Vol. 1218, pp. 61-92, Springer Verlag (1986) | MR 869596 | Zbl 0602.35088

[8] Froese, R.G., Herbst, I.: A new proof of the Mourre estimate. Duke Math. J. 49, n°4, 1075-1085 (1982) | MR 683011 | Zbl 0514.35025

[9] Graf, G.M.: Asymptotic completeness for N-body short-range systems: a new proof. ETH-preprint 89-50.

[10] Hack, M.N.: Wave operators in multichannel scattering. Nuovo Cimento Ser. X 13, 231-236 (1959) | Zbl 0086.42804

[11] Hunziker, W.: Time dependent scattering theory for singular potentials. Helv. Phys. Acta 40, 1052-1062 (1967). | Zbl 0152.46303

[12] Mourre, E.: Absence of singular continuous spectrum for certain selfadjoint operators. Commun. Math. Phys. 78, 391-408 (1981) | MR 603501 | Zbl 0489.47010

[13] Perry, P., Sigal, I.M., Simon, B.: Spectral analysis of N-body Schrödinger operators. Ann. Math. 114, 519-567 (1981) | MR 634428 | Zbl 0477.35069

[14] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. I-IV, Academic Press, (1972-79) | MR 493419 | Zbl 0242.46001

[15] Sigal, I.M., Soffer, A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann. Math. 126, 35-108 (1987) | MR 898052 | Zbl 0646.47009

[16] Sigal, I.M., Soffer, A.: Long-range many-body scattering. Asymptotic clustering for Coulomb-type potentials. University of Toronto preprint (1988), to appear in Inventiones Mathematicae | MR 1029392 | Zbl 0702.35197

[17] Sigal, I.M., Soffer, A.: Local decay and propagation estimates for time-dependent and time-independent Hamiltonians, University of Princeton preprint (1988)