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1. INTRODUCTION

The problem we are going to start with can be formulated as follows : let A be a

differential or pseudo-differential operator on a noncompact Riemannian manifold M and
let A define a (unbounded) operator in the Hilbert space L 2(M) ; let for some À E C we
know a solution 0 of the equation A1jJ = ay satisfying some estimates at infinity ; when
can we conclude that À is in the spectrum u(A) of the operator A in L2(M) ? (The exact
definition of a(A) will be given in Section 1).

An example of the sort is the well known Schnol theorem ([Sch], [C-F-K-S]) which
(with some simplifying restrictions) states that if A = -D + q(x) is a Schrôdinger operator
in L2(Rn) with the potential q E L~ (R’~) such that q(~) &#x3E; -C for all x E R’~ and there
exists a non-trivial solution 0 of the equation A’ljJ == such that for every s &#x3E; 0

then A E Q(A~. Another Schnol theorem ([Sch]) also concerning the Schrôdinger operator
states that if the negative part q_(~~ = min(0, q(z)) satisfies the estimate

then the existence of a non-trivial polynomially bounded solution (i.e. a solution 0 such
that 0(x) - 0((1 + with some N &#x3E; 0) for the equation Ao implies that
a e 

T. Kobayashi, K. One and T. Sunada ((K-0-S~) introduced.

Definition 0.1. An operator A satisfies the weak Bloch property (WBP) if the
following implication is true :

{ there exists a 0 such that A~ _ ~1~~ ~ ~ E 

So each of the mentionned Schnol theorems implies that the Schrodinger operator on
Rn with a locally bounded and semi-bounded below potential satisfies WBP.

On the other hand the Laplacian A of the standard Riemannian metric on the hyper-
bolic space Hn does not satisfy WBP because Al = 0 but 0 a(A).

It is natural to investigate the following WBP-problem : describe classes of man-
ifolds and operators which satisfy WBP.

It is easy to notice that the WBP-problem is closely connected with the problem of
coincidence of spectra of an operator in spaces for different p : if all these spectra
for 1  p  oo coincide then WBP evidently holds because if ap(A) means the spectrum
of A in LP(M) then the existence of a non-trivial bounded solution 0 of Ao = implies
that A e so AC ~2(A) _ a(A). The problem of the coincidence of spectra was
considered on discrete metric spaces in [S], where it was pointed that the coincidence
follows from the exponential decay of the Green function off the diagonal provided the
space has a subexponential growth of the number of points lying in a ball of the radius
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r as r - +oo. The exponential decay of the Green function off the diagonal was proved
in [S] for some operators which where called pseudodifference operators, e.g. difference

operators with a finite radius of action and bounded coefficients on disrete groups etc.

The same reasoning works also for continuous objects when the appropriate estimates
of the Green function hold. Such estimates were obtained in [M-S] for uniformly elliptic
operators on unimodular Lie groups and in [Kor 1,2] on general manifolds of bounded
geometry. It follows (though it was not noted in [M-S] or [Kor 1,2]) that the spectra of
corresponding operators in coincide for all p e (1, +oo) provided the volumes of
balls of the radius r grow subexponentially as r ~ +00, and also that WBP is satisfied
in this situation. The main ideas of this approach will be explained here in detail. The
important point here is a use of some weight Sobolev spaces with exponential weights. In
[K-O-S] the authors used an entirely different method which is quite close to the original
Schnol method (see also [C-F-K-S]). The WBP was proved in [K-O-S] for the Schrôdinger
operators with periodic potentials on Riemannian manifolds M with a subexponential
growth of volumes of balls and with a discrete group of isometries F such that the orbit
space M/F is compact.

Now let M be a complete connected Riemannian manifold, d~x, y) be the Riemannian
distance between x and y, x, y E M. Let A be a differential operator on M. Denote by

its spectrum in ~2~11~).
Definition 0.2.-

i) The operator A satisfies the weak Schnol property (WSP) if the existence of a
non-trivial solution 0 of the equation Ao = Ao satisfying an estimate of the form

(with some N &#x3E; 0 and a xo) irnplies that À E a(A).
ii) The operator A satisfies the strong Schnol property (SSP) if the following impli-

cation is true : if there exists a non-trivial solution 0 of the equation Ao = Ao such
that for every e &#x3E; 0

(with a fixed xo) then A E a(A) .
Clearly (SSP) implies (WSP) and (WSP) implies (WBP). We shall prove that if M is

a manifold of bounded geometry with a subexponential growth of volumes of balls and A
is a uniformly elliptic operator with C°°-bounded coefficients on M then A satisfies (SSP)
and even stronger property : if for every e &#x3E; 0 there exists a non-trivial solution Çe of

satisying (0.3) then A e Q(A). So our result extends the result of [K-0-S] to a
much more general situation.

The main ideas of this paper essentially contained in [S], [M-S] and [Kor 2] though
the formulation of the corollaries of those results here is inspired by the beautiful paper
[K-0-S] an is done here for the first time.
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1. Preliminaries

In this section we shall fix notations and recall necessary definitions and facts. Let M
be a Riemannian manifold, n = dimM. Denote by the tangent space of M at a point
~ e M and let exp., : TxM ---+ M be the usual exponential geodesic map : exp~ v = 7(1)?
where q(t) is the geodesic (with a canonical parameter which is proportional to the arc
length) starting at x with the initial speed v E Txllil, i.e. ,(0) == x, --ÿ(0) = v. We shall
always suppose that lll is complete or equivalently that expx is defined everywhere i.e. for
every x E M and v E the corresponding geodesic q(t) can be defined for all t E R.
The exponential map exp., : M is a diffeomorphism of a ball Bx(0, r) C T~M
of a radius r &#x3E; 0 with the center 0 on a neighboorhood Ux,r of x in M. Denoting by rx
the supremum of possible radii of such balls we can define the injectivity radius of M as
rinj = inf x e M If rinj &#x3E; C then taking r e (0, rinj) we see that expx : r) - Ux, r
will be a diffeomorphism for every x e M. Euclidean coordinates in TxM (associated with
a orthonormal frame in define coordinates on (by means of expx) which are
called canonical.

Definition 1.1. (see e.g. (C-G-T~ or [R]). M is called a manifold of bounded
geometry if the following two conditions are satisfied :
a) &#x3E; 0 ;

b) Ck , k = 0,1, 2, ~ ~ ~ (i.e. every covariant derivative of the Riemann curvature
tensor is bounded).

The property b) can be replaced by the following equivalent property which will be
more convenient for the use in this paper

b’) let us fix any r E (0, and let Ux,r,Ux’ ,r be two domains of canonical coordinates
y : Ux, r -~ Rn, y’ : - Rn such that ~ ~ : consider the vector function
y 0 y-1 : R,’~ ; then 

for every mutiindex a.

Examples of manifolds of bounded geometry are Lie groups or more general homoge-
neous manifolds (with invariant metrics), covering manifolds of compact manifolds (with
a Riemannian metric which is lifted from the base manifold), leaves of a foliation on a
compact manifold (with a Riemannian metric which is induced by a Riemannian metric of
the compact manifold).

Below in this paper we shall always use only canonical coordinates with a fixed r e
(0, Then all the change of coordinate functions have bounded derivatives of all orders.
This property allows to formulate a correct notion of Ck-boundedness ( l~ = 0, 1, 2, ... ) or
C°°-boundedness for functions, vector fields, exterior forms and other tensor fields on M.
Namely a function f : M --; C is called Ck-bounded if f E C~(M) and ]8§fi f(y) ]  Ca for
every mutiindex a with l~ and for any choice of canonical coordinates. A function

f : M - C is called C°°-bounded if f e C°°(M) and f is C~-bounded for every =
0,1, 2, ~ ~ ~. Let Cb(M) be the space of all C~-bounded complex-valued functions on M
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(here k = 0, 1, 2, ... or k = oc). Of course Ck -boundedness of a function f E 
is equivalent to the estimate C but the formulation in local coordinates is

sometimes more convenient.

Similarly a vector field, an exterior form on any general tensor field on M is called
C~-bounded (1~ = 0, 1, 2, ... or k = oo) if all components of the field in any canonical
coordunate system are C~-bounded as C~-functions of corresponding coordinates (with
bounds depending only on the order of the differentiation but not on the chosen coordinate
neighbourhood).

Let A : COO(M) --+ C°°(M) be a differential operator of order m with Coo-coefficients.
We shall call it C°°-bounded if in any canonical coordinate system A is written in the form

where the coefficients 6~ are (complex-valued) functions satisfying the estimates
Cp for any multiindex (3 (with a constant C, which does not depend on

the chosen canonical neighbourhood). A C°°-bounded vector field defines a C°°-bounded
differential operator of order 1.

Let E be a complex vector bundle on M. We shall say that E is a bundle of
bounded geometry if it is supplied by an additional structure : trivializations of E on
every canonical coordinate neighbourhood such that the corresponding matrix transition
functions guu, on all intersections u nu, of such neighbourhoods are C°°-bounded i.e. all
their derivatives Daguu, (y) with respect to canonical coordinates are bounded with bounds
Co which do not depend on the chosen pair Examples of vector bundles of bounded
geometry are : trivial bundle M x C, complexified tangent and cotangent bundles TM Q9 C
and C, complexified exterior powers C of the cotangent bundle (C°°-
sections of Q9 C are exterior complex-valued Ê-forms on M), complexified tensor
bundles etc. The definition of C°°-bounded differential operator is easily generalized to
the case of operators

acting between spaces of C°°-sections of vector bundles of bounded geometry E, F (the
definition is the same as for scalar operators but with the use of the representation (1.1)
in canonical coordinates). Examples of C°°-bounded differential operators in this more
general context are the exterior differentiation de Rham operator d : 11~(~VI ~ --~ 
where = C), operators of covariant differentiation of tensors,
Laplace-Beltrami operators on functions or forms etc.

If E is a vector bundle of bounded geometry on M then the notion of el-boundedness
and the corresponding spaces E) of Ce-bounded sections are also defined for Ê _
0,1,2,... or Ê = oo. Also the space LP(M, E) of the sections with the integrable p-th
power of a fiber norm (1  p  oo) is naturally defined.
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In what follows we shall always suppose for the sake of simplicity that M is connected.
Then the Riemannian distance d : M x M -~ ~0, +oo) is correctly defined ; namely d(x, y)
is the infimum of Riemannian lengths of all arcs connecting x and y. Note that if r &#x3E; 0 is

small enough then the neighbourhoods described before are balls B(x, r) of the radius
r with the center x with respect to this distance.

The following Lemma is essentially due to M. Gromov (G~ .
Lemma 1.1. For everyf &#x3E; 0 there exists a countable covering of M by balls of the
radius e : M = UB(Xi,é) such that the covering of M by the balls B(xi, 2,-) with the
double radius and the same centers has a finite multiplicity.

Here the multiplicity (or index in the terminology of [G]) of the covering by balls is
the maximal number of the balls with non-empty intersection in this covering.

Lemma 1.1 implies the existence of "uniform" partition of unity which is subordinate
to a covering by balls from Lemma 1.1. Let us choose s  r/2 where r e (0, is fixed
as before.

Lemma 1.2. For every s &#x3E; 0 there exists a partition of unity 1 = on M such
that

where is the sequence of points from Lemma 1.1 ;

for every multiindex a in canonical coordinates uniformly with respect to i (i.e. with the
constant Ca which does not depend on i~.

This Lemma is a useful tool to construct global objects on M from their local prereq-
uisites. One of the important examples is the uniform Sobolev spaces W(M),s E R,1 
p  oc (see e.g. [R] in case p = 2). First introduce the Sobolev norm on Cô (M) by
the formula

where means the usual Sobolev norm of order s in canonical coordinates on
If s E Z+ then the local Sobolev norm can be written for every open set Q C R’~

as
... __

Also if we choose a system Xl, ’ ~ ’ , X~ of C°°-bounded vector fields on M such that
Xl (x), ’ ’ ’ , XN(x) generate TxM for every e M then we can introduce the following
norm which is equivalent to ( 1.3)
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where dx is the standard Riemannian density on M,

Another equivalent norm for s E Z+ is given by

,,,-v

(here 1 . 1 is understood as the norm induced by the Riemannian metric on tensors).
Now we can introduce the uniform Sobolev space W~ (M) as the completion of Cü(M)

with respect to the norm (1.3). The spaces have the same properties as the
corresponding spaces in the case M = Rn. All of them are naturally included in the space
of distributions D’(M). The space W~ (M) has a natural Hilbert structure ani will be
also denoted H-(M). The usual embedding theorems are true, e.g. W~(M) =- LP(M)
if 1  p  oo , W~(M) C if s &#x3E; k + n/p. If E is a vector bundle of bounded

geometry then the Sobolev norms of sections and the corresponding Sobolev spaces of
sections W~ (M, E) are defined in the same way.

Denote = = and the similar meaning
have the notations E), W;o(M, E).

Let A be a differential operator of order m acting as in (1.2) between spaces of sections
of vector bundles of bounded geometry. The principal symbol of A gives a family of linear
maps

where x e M , (z, g) E is a cotangent vector based at x, Ex and Fx are fibers
of bundles E and F over x. Let us choose admissible trivializations of E and F over
a neighbourhood of x. Then am ( x, ç) becames a (complex) matrix. The operator A is
called elliptic if this matrix is invertible for every (x, ~) 0. It is called uniformly
elliptic if there exists C &#x3E; 0 such that

Here lçl is the length of (x, ç) with respect to the given Riemannian metric, ( is

the operator norm of the matrix a-1 in the above mentioned trivializations.
Let A be a C°°-bounded differential operator of order m on M. Then A defines a

bounded linear operator A : W~ (~lil ~ -~ for every s e R, 1  p  oo (if A acts
as in (1.2) then it defines a bounded linear operator A : W;(M, E) -~ w;-m(M, F~~. Now
we shall formulate regularity properties and a priori estimates which follow from uniform
ellipticity.
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Lemma 1.3. Let A be a C°°-bounded uniformly elliptic differential operator acting as
in ~1.2) between spaces of sections of vector bundles of bounded geometry. Then for every

R, p E (1, +oc) there exists C &#x3E; 0 such that

Proof : Let us choose the points x1, x2, ~ ~ ~ and s &#x3E; 0 as in Lemma 1.1. We have the usual

local a priori estimate

with a constant C1 which does not depend on 1. Summing over all Í we evidently ob-
tain an estimate which is equivalent to (1.5). The last statement also follows from the

corresponding local regularity result and the estimate (1.6). o

Lemma 1.3 easily implies the coincidence of weak and strong extensions in 
p  oo, for the corresponding operators. Namely let A be an operator satisfying the
conditions of Lemma 1.3. We can consider two unbounded operators generated by A in

 p  oo. Let ’A be the closure of (such a closure is
correctly defined because A can be extended to a continuous linear operator from E)
to F) and LP(M, E) C D’(M, E), where the inclusion operator is continous). So
the graph of ’A is the closure of the set E in Lp(M, E) x LP(M, F).
Let wA be a weak extension of A in E) i.e. the domain of wA is

where A is applied in the sense of distributions and = Au if u E 

Proposition 1.1. If A satisfies the conditions of Lemma 1.3 and 1  p  oo then
WA ==8 A and

Proof : It is clear that

but Lemma 1.3. implies that

Corollary 1.1. Let A satisfies the conditions of Lemma 1.3 with E = ~’, E has a
hermitean C°°-bounded scalar product on fibers, (- , .) is the scalar product on E)
induced by the scalar product offibers and the Riemannian density on M and A is formally
self-adjoint with respect to the scalar product i.e.

Then A is essentially self-adjoint in L2 ~M, E) .
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In the next sections we shall investigate spectra of C°°-bounded uniformly elliptic
operators A in LP(M, E) and use for them notations and also the notation

which is correct due to Proposition 1.1. We shall also write instead of lT2(A).
Clearly SA A in E) but the coincidence -9A =w A in L1 (M, E) can be proved

for the operators with positive principal symbols ([Kor 1,2]).

2. Weight estimates and decay of the green function
We begin with a construction which gives a substitute with natural smoothness prop-

erties for the distance d = d(x, y) on a connected Riemannian manifold M of bounded
geometry. Such a substitute will be a function which we shall denote by d = d(x, y). For
the case of Lie groups it can be constructed as a convolution of d(x, .) with a Cô -function
([M-S]). General case requires a more complicated procedure which we shall give now.

Lemma 2.1. (Yu.A. Kordyukov). There exists a function d : M x [0, +cxJ)
satisfying the following conditions :
(i~ there exists p &#x3E; 0 such that

for every x, y E M ;
for every multiindex a with 1 &#x3E; 0 there exists a constant Ca &#x3E; 0 such that

where the derivative 0"Y’ is taken with respect to canonical coordinates.

Moreover for every 6 &#x3E; 0 there exists a function J : M x M --~ satisfying (i)
with p  s.

Proof : Let us choose a covering M = UB(Xi,2é) and a partition of unity 1 = ~c~i
described in Lemmas 1.1 and 1.2. We shall suppose that an orthonormal frame is choosen
in every tangent space TXi M, i = 1 , 2, ... , so TXi M is identified with Rn and the exponential
maps at the points xi can be considered as the maps expXi : Rn --3 M.

Let us choose a function 81 E such that 91 &#x3E; 0, suppol C lx 1 lx 1  1},
01(x)dx =1 and define ()6(X) = fJ-n()1(x/8) for any à &#x3E; 0. Now choosing 6 sufficiently

small we can define

Subtracting the evident identity
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from (2.1) and using the triangle inequality we obtain the estimate

It follows from the bounded geometry conditions that there exists C &#x3E; 0 such that

 Cb if y E supppj i and z 1  6, so we obtain

which proves (i) with small p provided 6 is chosen sufficiently small.

To prove (ii) let us consider first the case lai = 1.

Using the notation 9y in some canonical coordinates we obtain

where are some functions (in the chosen canonical coordinates) which are C°°-bounded
uniformly with respect to i, j, k and the chosen coordinates. The same arguments as we
used in proving (i) show that the first term in the right hand side of (2.2) is estimated

by Cb. To estimate the second term we can subtract from him a similar term which
is obtained by changing d(x, expx, (z)) to d(x, y) (this modified term evidently vanishes).
Following then the reasoming used for the proof of (i) we obtain that the second term is
estimated by a constant.

Further inductive reasoning shows that (ii) is true for every a q.e.d. o

Now we can introduce exponential weights e C°°(M) by

where s E R (usually s will be sufficiently small).
Let us introduce a weight Sobolev space

where s e R, p C (1, and y is any fixed point in M. It is easy to check that

for any fixed points yl, y2 E M. It follows that the space does not depend on the
chosen point y. The space is a Banach space with the norm
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These norms obtained by use of different points y are equivalent but the dependence on y
is sometimes essential.

Now we shall consider a C°°-bounded uniformly elliptic operator A : C~(M,~) 2013~
E) where E is a vector bundle of bounded geometry. Let us suppose that B E

C B u,(,4) for some p e (1, +oo). Then there is a bounded inverse operator

The L. Schwartz kernel of this inverse operator will be denoted G = G(x, y) and will be
called the Green function (p and À are fixed). We are ready to prove estimates of decay
of the Green function off the diagonal A = 1(x, x) lx E M} C M x M. Note that G is a
distributional section of the bundie E* 0 E on M x M (the fiber of E o E over a point
(x, y) E NI x M is Ex ® E~, where .Eÿ is the dual linear space to Ey ). We identify the
density bundle over M with a trivial bundle by use of the standard Riemannian density.

Theorem 2.1. Let p E (1, +oo) and À E C, ap(A) be fixed, G = G(x, y) the Green
function. Then G E C°°(M x M B A) and there exists s &#x3E; 0 such that for every 6 &#x3E; 0 and
for every multiindices cx, ~ there exists C,,,,66 &#x3E; 0 such that

Here the derivatives are taken with respect to canonical coordinates and absolute
value in the left hand side is taken in the corresponding fibers.

Proof : Without loss of generality we can suppose that À = 0. For the sake of simplicity
of notations we shall only consider scalar case i.e. the case of trivial E = M x C. Let us
for every e E R, y E M consider a differential operator = where is the

multiplication operator (F,-,yu)(x) = fe,y(x)u(x) with fe,y defined by (2.3). Choosing any
s E R we obtain a commutative diagram

where the vertical arrows are linear topological isomorphisms and even isometries if we use
the norm (2.4) in and the corresponding norm in It follows from the

p le

properties of i described in lemma 2.1 that

where E M, lél ]  1} is a family of uniformly C°°-bounded differential operators of
order m -1. It follows that the operator norm
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tends to 0 as E -~ 0. The required invertibility of A implies due to Proposition 1.1 that A
defines a linear topological isomorphism of Banach spaces

so in the diagram (2.6) also defines a linear topological isomorphism if lél (  60 where
~o &#x3E; 0 is sufficiently small. Besides all norm estimates are uniform with respect to y E M.
Hence A in the diagram is also uniformly topologically invertible if lél (  60.

Now notice that

where by is the standard Dirac 6-measure on M supported at y E M. The Sobolev

embedding theorem implies that if s  -n/p then by E n_.cRW,-9,_..(M) and 
uniformly over y E M and s with Isl (  1. It follows from (2.8) that

if JE 1  60.

Now note that

It follows from (2.9) and the uniform local a priori estimate like (1.6) that for every
- - , - , - - - - - . - - , 

The Sobolev embedding theorem implies now that the required estimate (2.5) is satisfied
if /3 = 0. Now the same reasoning can be applied with respect to y because we can use the
uniformly elliptic equation

where tA is the formally transposed operator to A defined by the equality

where

dx is the Riemannian density on M. This immediately leads to the estimates (2.5). Il

We need also uniform local estimates of the Green function near the diagonal but the
simplest way to obtain them is in a use of pseudo-differential operators. This will be done
in the next Section.
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3. Uniform properly supported pseudo-differential operators and structure of
inverse operators

We shall introduce here classes of uniform properly supported pseudo-differential op-
erators on a manifold M of bounded geometry which coincide locally with well-known
Hôrmander classes om and ([H], vol.3). Such classes were introduced first on Lie

groups in [M-S] and later in general case in [Kor 2]
Definition 3.1. UW-OO(M) is a class of all ;operators R with a L. Schwartz kernel
KR E C°°(M x M) satisfying the following conditions
(i) there exists CR &#x3E; 0 such that = 0 if d(x, y) &#x3E; CR ;

l a~ aÿ KR ( x ~ y ) I  
where the derivatives are taken in canonical coordinates.

The class UW-OO(M) will serve as a class of negligible operators in our context. Notice
that an operator R E UW-OO(M) is not necessarily compact e.g. in L2(M).

In the next definition we fix r E (0, rinj) as was already done before.

Definition 3.2. a class of all operators A : satisfying
the following conditions :
(i) there exists CA &#x3E; 0 such that y) = 0 if d(x, y) &#x3E; CA (here ~’A is the L. Schwartz

kernel of A) ;
let B(xo, r) be a ball on M, then in canonical coordinates on B(xo, r) the operator

can be written as

where E sn uniformly with respect to i.e..

with Cap which do not depend on xo, and Rxo is an operator with a L. Schwartz kernel
COO(B(xo,r) x satisfying the following estimates

with constants which do not depend on .ro’

Definition 3.3. is a class of operators A E which have polyho-
mogeneous local symbols axo(x, ç) with uniform estimates of homogeneous terms in local
representations (3.1~. More exactly it is required that there exist = 

01 il 2’..., such that the following conditions are satisfied : 
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(i) defined when E B(~o, r), ~ ~ 0 and is homogeneous of degree m - j
with respect to e, i.e.

with the constants which do not depend on 

(iii) let x E x~~) =1 when g is close to 0, and X is fixed, then for every N, a, (3, xo

with which do not depend on xo.

So the classes are just usual Hormander classes of properly supported
pseudo-differential operators but with appropriate uniformity conditions.

The classes UBJ!m, are defined for all m E R. The class can be

defined also for m E C as a class of operators A E UwRe m(M) such that the conditions
(i), (ii), (iii) of Definition 3.3 are satisfied if we replace m by Re m in (iii).

The usual algebraic and continuity properties are satisfied for the classes

In particular the following statements are easily checked :
(a) if Aj e = il 21 then A1 A2 E the same is true for the

classes UBI!;hg(M) ;
(b) if A E (or then A* E Uwm(M) (resp. where m is

complex conjugate to m). 
’~ ~

(c) if A e then A defines for every s E R, p e (1, +oc) a continuous linear
operator

Proposition 3.1. Let A be a C°°-bounded uniformly elliptic diffierential operator of
orderm on M. Then there exists B e such that I - AB, I - BA E 

Proof : The operator B with required properties is easily constructed by use of inform
local parametrices Bi for A in the balls from Lemma 1.1 and then patching them
up by the formula

where B!Ii are multiplication operators B!IiU(X) = is
taken from the partition of unity of Lemma 1.2, 1/Ji E are chosen to be

uniformly C°°-bounded and such that = 1 in a neighbourhood of supp pj a

Remark 3.1. Chosing s &#x3E; 0 sufficiently small we can obtain the parametrix B with a
L. Schwartz kernel h’B with
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Now we can describe the structure of the operator (A - À7) ~ in case À ~ ap(A) more
precisely.

First note that all the definitions and statements of this Section can be easily gener-
alized to operators acting in spaces of sections of vector bundles of bounded geometry on
M. The corresponding classes of operators A : Co~(M,E) 2013~ will be denoted

UIP--(M; E, F), E, F), E, F) or E) in case E = F.

Theorem 3.1. Let A : be a uniformly elliptic C°°-bounded
differential operator of order m. Let the closure of A in E) has an everywhere
defined bounded inverse A-1. Then there exist é &#x3E; 0 and a representation :

where B E F, E), T has a L. Schwartz kernel I1T E C°° satisfying the follow-
ing estimates 

’~ ~

Here the derivatives and the norm in the left-hand side are taken with respect to c~anonical
and canonical trivializations of E and F.

Proof : For the sake of simplicity of notations we shall consider the case of trivial E =
F = M x R. It follows from Proposition 3.1 that there exists B E such that

where R E Multiplying by A-1 from the left we obtain (3.2) with T = A-1 R.
Now it is clear that

Notice that KR(’, y) E Cgo(M) and supp KR(., y) C B(y, Tc) for some ro &#x3E; 0 which does
not depend on y. Hence it follows from (3.4) and Theorem 2.1 that the estimates (3.3)
are fulfilled if d(x, y) &#x3E; ro &#x3E; 0 arbitrarily small so the estimates (3.3) are proved outside
b-neighbourhood of the diagonal for every b &#x3E; 0.

It remains to prove (3.3) in the set

where 6 &#x3E; 0 can be choosen arbitrarily small. But then (3.3) reduces to the boundedness
of all derivatives which follows from the Sobolev embedding theorem and the boundedness
of the operator

for every s E R which is due to the regularity properties (Lemma 1.3) and the closed graph
theorem. a

Now we can prove estimates of the Green function near the diagonal.
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Theorem 3.2. Let A, p, ~ satisfy the conditions of Theorem 2.1, G be the Green
function (the L. Schwartz kernel of ~A - ~1~~-1 ). Then there exists E &#x3E; 0 such that

provi ded m  n ;

provided m &#x3E; n.

Proof : As usual we shall consider the scalar case. Due to Theorem 2.1 it is sufficient to

prove (3.5) and (3.6) for E M such that d~x, y)  b with some fixed b &#x3E; 0. Let us

consider the representation (3.2). Clearly the L. Schwartz kernel satisfies the required
estimates due to (3.3). Now we have to consider and to do this let us present B locally
in in the form (3.1)

where the L. Schwartz kernel of Rxo satisfies the required estimates and = bxo (x, ç) is
a polyhomogeneous symbol with uniform estimates. The L. Schwartz kernel of bxo(x, Dx)
in local canonical coordinates near zo is equal to

so to prove the necessary estimates it is sufficient to use the well known properties of the
Fourier transform of homogeneous functions or their appropriate distributional regulariza-
tions (see e.g. [H], vol. 1). a

4. Spectral properties of uniformly elliptic operators on manifolds of subexpo-
nential growth
Définition 4.1. Let M be a manifold of bounded geometry. We shall say that M is a
manifold of subexponential growth if for every E &#x3E; 0 there exists Ce &#x3E; 0 such that

where vol denotes the volume with respect to the Riemannian density.
The following Proposition will show the property of Green functions on subexponential

manifolds which is most valuable for us.

Proposition 4.1. Let M be a manifold of subexponential growth and A, A, p, G the
same as in Theorem 3.2. Then there exists C &#x3E; 0 such that

(the first estimate holds uniformly with respect to y and the second uniformly with respect
to ~~, where denote the Riemannian density on M.
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Proof : Using Theorem 3.2. we see that if we take the integrals in (4.2) over B(y, 1) and
B(x,1) respectively then they wou.ld be bounded as required. Therefore it is sufficient to
estimate the integrals over M B B(y, 1) and ~, B(x, 1). They are estimated as follows

since we can take ci &#x3E; 0 arbitrarily small due to (4.1). a

Corollary 4.1. Let the conditions of Proposition 4.1 are satisfied. Then ~A - 
can be extended to a bounded linear operator

for every q E [1, +oo].
Proof : The statement is true due to (4.2) and the well known Schur lemma (see e.g. ~H~,
vol.3). a

Now we are ready to discuss the spectra in LP for different p. We shall use notations
for spectra which were introduced in the end of Section 1. Namely the spectrum of the
closure of A in LP(M, E) will be denoted 0" p(A) if 1  p  oo (remind that sA =w A if
1  p  oo) and we shall also use O"p(W A) in the extremal cases p = 1 and p = oo. We shall
also use the notation a(A) = U2(A)-
Theorem 4.1. Let M be a manifold of subexponential growth, E a vector bundle of
bounded geometry over M, Cf(M, E) - Cô (M, E) an uniformly elliptic C’ -bounded
differential operator. Then ap (A) does not depend on p :

Furthermore

Proof : As always let us consider the scalar case. We have to prove that if À E 
for some po C then À ~ for all p E and À fj. (j1(8A) (remind that
WA ==8 A in if p E (1,00)). For the sake of simplicity of notations suppose that
a=0.

Let G be an integral operator with the Green function G(~, ~~ as the L. Schwartz kernel.
Then G can be extended to a linear bounded operator



V-17

for every p E due to Corollary 4.1. Let us introduce for anye &#x3E; 0 a space W~ which
contains functions p e C°°(M) such that

for every multiindex 0152 (with the derivative aa in canonical coordinates) and a choosen
fixed xo E M (the condition does not depend on The subexponentiality condition
clearly implies that W~ C LP (M) for all E &#x3E; 0, p E [1, oo] and moreover

Now it follows from Theorem 3.1 that G maps into W~ with some s &#x3E; 0. Evidently
AG = GA = I on C~ (M). Note that the first equality implies that A,,G(x, y) = 6y(x)
and the second implies that tAtG = I on Cô (M), hence = bx(y). Another

important algebraic corollary is that tGtA = I on Cô (lVl).
Now it is easy to check that AG = I on L~(M) for every p E [1, oo] if A is applied in

the sense of distributions. In fact if ~c E LP(M), v E then

hence AGu = u. It follows that Gu E Dp. It follows that Gu E hence A :

is surjective.
Let us prove that GA = I on E ~1, oo~. If u E v E then

due to the Fubini theorem. Note that E We for some e &#x3E; 0. So it is enough to prove
that

Let us define a cut-off function

where ’Pi are the functions from the partition of unity of Lemma 1.2. It is clear that

x E  1 and for every compact K C M there exists N such that XN =1
in a neighbourhood of h’. Moreover lâaxNI :::; Ca in canonical coordinates uniformly with
respect to N.

Now we can begin with the equality

and try to take limit as N -~ oo to obtain (4.8). Note that (Au)p E due to

(4.5), therefore (Au, p) due to the dominated convergence theorem.
The same reasoning can be applied to the right-hand side of (4.7) due to the estimates of
derivatives of xN, so we obtain (4.6).

We have proved that the operators A : LP(M) and G : 
are mutually inverse. Therefore (4.3), (4.4) and hence Theorem 4.1 are proved. o

Theorem 4.1 immediately implies
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Corollary 4.2. Let M, A be as in Theorem 4. I. Then WBP holds i. e. if there exists

u E 0, such that Au = Au in the sense of distributions then ~ E a(A).
It is also easy to obtain SSP and a stronger result which was mentionned in Introduc-

tion.

Theorem 4.2. Let M be as in Theorem 4.I, À e C and for every s &#x3E; 0 there exists a
Weak solution 0 of = aÿ~~ satisfying

with a fixed XQ. Then À E 

Proof : Let us consider the scalar case and suppose that À = 0. We should repeat
arguments given in the proof of Theorem 4.1. Let us suppose that 0 ~ ~(A). Then we can
construct the Green operator G.

Using the local a priori estimates it is easy to prove that (4.8) implies the same
estimates for the derivatives of 0, :

for every mutiindex a. If - is sufficiently small then (4.9) implies that makes sense

and equals ~~ because for every v e we obtain due to Theorem 3.1 and the Fubini
theorem

(the middle equality is obtained by a limit procedure with the same use of the cut-off
functions XN as in the proof of Theorem 4.1). On the other hand A0, = 0 implies

= 0, hence Çe = 0, so we get a contradiction which proves the theorem. o

5. Generalizations and open questions
Most part of the results described earlier can be generalized to pseudo-differential

operators. We shall mention some of the generalizations. Theorem 3.1 is true for uni-

formly elliptic pseudo-differential operators A E if m &#x3E; 0. Also if
A E E, F) is uniformly elliptic in appropriate sense (see [M-S] for the case of
Lie groups) then the statement of Theorem 3.1 is true with B E Uw-m(M; F, E). So
Theorem 3.2 is also true in the case A E UB!1;hg(M; E, F) if m &#x3E; 0 (the estimate (3.5) will
be true when m  n or m - n / Z). All the results of Section 4 are then easily generalized
to the case when A E E), m &#x3E; 0.

In fact it is not necessary to consider only pseudo-differential operators which are
properly supported. Everything is true e.g. for the operators like the right-hand side in
(3.2) i.e. for the operators of the form A = Ao + T, where Ao e E, F) and T
satisfies the same conditions as in the formulation of Theorem 3.1. Moreover the require-
ment of exponential decay of the kernel off the diagonal can also be relaxed if the volume
of balls on M grows even more slowly. The corresponding machinery was developped in
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[M-S] for Lie groups and is perfectly suitable for general manifolds of bounded geometry
so we omit the details.

Now we shall mention some open problems.
1° Conjecture. Corollary 4.2 holds not only for the manifolds of subexponential growth
but also for all amenable manifolds i.e. manifolds lVl of bounded geometry such that there
exists a system of compacts in M satisfying the following conditions :
(i) for every compact Is C M there exists j such that h’ 

where vol is the Riemannian volume on M.

In other words WBP holds for uniformly elliptic C°°-bounded operators on amenable
manifolds.

Note that in a weaker form this conjecture was formulated in [K-O-S] .
2° How to generalize Schnol results [Sch] about Schrôdinger operators with unbounded

potentials (see introduction) to more general operators and manifolds ? In particular how
to describe general situations when (SSP) holds ?
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