@article{SEDP_1991-1992____A18_0, author = {Petkov, V. M.}, title = {Le comportement de la r\'esolvante modifi\'ee du laplacien pour des obstacles captifs}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:18}, pages = {1--9}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1991-1992}, mrnumber = {1226497}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1991-1992____A18_0/} }
TY - JOUR AU - Petkov, V. M. TI - Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:18 PY - 1991-1992 SP - 1 EP - 9 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1991-1992____A18_0/ LA - fr ID - SEDP_1991-1992____A18_0 ER -
%0 Journal Article %A Petkov, V. M. %T Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:18 %D 1991-1992 %P 1-9 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1991-1992____A18_0/ %G fr %F SEDP_1991-1992____A18_0
Petkov, V. M. Le comportement de la résolvante modifiée du laplacien pour des obstacles captifs. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 18, 9 p. http://archive.numdam.org/item/SEDP_1991-1992____A18_0/
[BGR] La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Applications à la théorie de diffusion, Comm. PDE, 7 (1982), 905-958. | MR | Zbl
, , ,[CPS] Singularities of the scattering kernel for generic obstacles, Ann. Inst. H. Poincaré (Physique théorique), 53 (1990), 445-466. | Numdam | MR | Zbl
, , ,[G] Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bulletin de S.M.F., Mémoire n° 31, 116 (1988). | Numdam | MR | Zbl
,[H] The Analysis of Linear Partial Differential Operators, vol. III, Pseudo-differential operators, Berlin; Springer, 1985. | Zbl
,[I1] Precise information on the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ., 27 (1987), 69-102. | MR | Zbl
,[I2] Decay of solutions of the wave equation in the exterior of several strictly convex bodies, Ann. Inst. Fourier, 38 (1988), 113-146. | Numdam | MR | Zbl
,[I3] On the existence of the poles of the scattering matrix for several convex bodies, Proc. Japan Acad., 64, Ser. A (1988), 91-93. | MR | Zbl
,[LP] Scattering Theory, New-York, Academic Press, 1967. | MR | Zbl
and ,[MS] Singularities in boundary value problems, I, Comm. Pure Appl. Math., 31 (1978), 593-617, II, 35 (1982), 129-168. | Zbl
, ,[P1] High frequency asymptotics of the scattering amplitude for non-convex bodies. Comm. PDE, 5 (1980), 293-329. | MR | Zbl
,[P2] Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes, Séminaire EDP, Exposé VIII, Ecole Polytechnique, 1989-1990. | Numdam | MR | Zbl
,[P3] The behaviour of the modified resolvent of the Laplacian in the exterior of several convex obstacles, Preprint 1992.
,[PS1] Periods of multiple reflecting geodesics and inverse spectral results, Amer. J. Math., 109 (1987), 619-668. | MR | Zbl
, ,[PS2] Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles, Trans. Amer. Math. Soc., 312 (1989), 203-235. | MR | Zbl
, ,[PS3] Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley & Sons, Chichester, 1992. | MR | Zbl
, ,[R] Solutions of the wave equation with localized energy, Comm. Pure Appl. Math., 22 (1969), 807-823. | MR | Zbl
,[S1] Nonexistence of generalized scattering rays and singularities of the scattering kernel for generic domains in R3, Proc. Amer. Math. Soc., 113 (1991), 847-856. | MR | Zbl
,[S2] On the singularities of the scattering kernel, Preprint 1991.
,[S3] Continuity properties of the generalized geodesic flow and singularities of the scattering kernel, in preparation.
,[V] Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach Sci. Publ. Ltd., 1988. | MR | Zbl
,