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RADIATION CONDITIONS AND SCATTERING THEORY
FOR N-PARTICLE QUANTUM SYSTEMS

D.Yafaev *

Universite de Nantes

The correct form of radiation conditions is found in scattering problem
for N-particle quantum systems. The estimates obtained allow us to give an
elementary proof of asymptotic completeness for such systems in the framework
of the theory of smooth perturbations.

1. One of the main problems of scattering theory is a description of asymp-
totic behaviour of N interacting quantum particles for large times. The com-
plete classification of all possible asymptotics (channels of scattering) is called
asymptotic completeness. The final result can easily be formulated in physics
terms. Two particles can either form a bound state or are asymptotically free.
In case N &#x3E; 3 a system of N particles can also be decomposed asymptotically
into its subsystems (clusters). Particles of the same cluster form a bound state
and different clusters do not interact with each other.

There are two essentially different approaches to a proof of asymptotic
completeness for multiparticle (N &#x3E; 3) quantum systems. The first of them,
started by L. D. Faddeev [1], relies on the detailed study of a set of equations
derived by him for the resolvent of the corresponding Hamiltonian. This ap-
proach was developped in [1] for the case of three particles and was further
elaborated in [2, 3]. The attempts [4, 5] towards a straightforward general-
ization of Faddeev’s method to an arbitrary number of particles meet with
numerous difficulties. However, the results of [6] for weak interactions are

quite elementary.
Another approach relies on the commutator method [7] of T. Kato. In

the theory of N-particle scattering it was introduced by R. Lavine [8, 9] for
repulsive potentials. A proof of asymptotic completeness in the general case is
much more complicated and is due to I. Sigal and A. Soffer [10]. In the recent
paper [11] G. M. Graf gave an accurate proof of asymptotic completeness in
the time-dependent framework. The distinguishing feature of [11] is that all
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intermediary results are also purely time-dependent and most of them have a
direct classical interpretation. Papers [10, 11] were to a large extent inspired by
V. Enss (see e.g. [12]) who was the first to apply a time-dependent technique
for the proof of asymptotic completeness.

The aim of this lecture is to outline an elementary proof of asymptotic com-
pleteness (Theorem 7) for lV-particle Hamiltonians with short-range potentials
which fits into the theory of smooth perturbations [7, 13]. Our approach hinges
on new estimates which establish some kind of radiation conditions (for the
precise statement, see Theorem 8) for N-particle systems. We omit some de-
tails. However, basic intermediary results are formulated and their proofs are
sketched.

2. Let us briefly recall some basic definitions of the scattering theory. For
a self-adjoint operator H in a Hilbert space H we introduce the following
standard notation: D(H) is its domain; a(H) is its spectrum; E(Q; H) is the
spectral projection of H corresponding to a Borel set Q C R; ?-~(°‘~)(H) is the
absolutely continuous subspace of H; is the orthogonal projection on
~(a~) (H); H(P) (H) is the subspace spanned by all eigenvectors of the operator
H; is the spectrum of the restriction of H on 1-(,(p)(H), i.e. is

the closure of the set of all eigenvalues of H. Norms of vectors and operators
in different spaces are denoted by the same symbol 11 . ~~; I is always the
identity operator; C and c are positive constants whose precise values are of
no importance.

Let Is be H-bounded operator. It is called H-smooth (in the sense of T.
Kato) on a Borel set P C R if for every f = E(Q; H)f E D(H)

Let now Hj, j = I, 2, be a couple of self-adjoint operators and let J be a
bounded operator in a Hilbert space 1í. The wave operator for the pair ~1,~2
and the "identification" J is defined by the relation

under the assumption that this strong limit exists. We emphasize that all

definitions and considerations for " + " and " - " are independent of each
other. Clearly, for every f 2 = Hl 

where " - " means that the difference between left and right sides tends to
zero. If the wave operator (1) exists, then the intertwining property
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(0 C R is any Borel set and = holds. It follows that the range
R(W:!: (H2’ Hi; J)) of the operator ( 1 ) is contained in and its closure
is an unvariant subspace of H2. Moreover, if the wave operator is isometric on
some subspace then the restrictions of Hl and H2 on the subspaces HI and
?-~2 = ~~(~2? Hi; respectively are unitarily equivalent. This equivalence
is realized by the wave operator.

We need the following sufficient condition of existence of wave operators
(see e.g. [14]).
Proposition 1 Let an operator :1 be and let its adjoint :1* be

H2-bounded. Suppose that

where the operators !(j,n are Hj-bounded and are on some bounded
interval A. Then the wave operators

exist.

3. We consider the Schrodinger operator H = T + V where T = -~ and
V is multiplication by a real function V~x) defined as follows. Suppose that
some finite number of subspaces Xa of X := Rd is given and let xQ be the
orthogonal projection of x E X on Xc. Set

where va are decreasing functions of variables xa. Note that in the two-particle
case the sum (2) consists of a single term va with X a = X . Clearly, 
tends to zero as ~x~ I -i oo outside of any neighbourhood (neighbuurhoods of all
subspaces are supposed to be conical) of Xa = X 8xa and is constant

on planes parallel to Xa. Due to this property the structure of the spectrum
of H is much more complicated than in the two-particle case. Operators H
studied here were introduced in [15] and are natural generalizations of N-
particle Hamiltonians. Consideration of more general class of operators allows
to unravel better the geometry of the problem.

We assume that each va is a sum of short-range Ya and long-range ~a
terms:

We say that a potential V’ is short-range if Vlo = 0. It is convenient to split
all conditions on va into two parts (the first has a preliminary nature). To
formulate them we need to introduce the operator TO = in the space

= 
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Assumption 2 Operators

are compact in the space 

Assumption 3 For some p &#x3E; 1 operators

are bounded in the space 

Compactness of + I)-’ ensures that the operator H is self-adjoint
on the domain D(H) = D(T ) =: D in the Hilbert space H = and H is
semi-bounded from below. Let us set

We prove asymptotic completeness under the assumption that VO are short-
range functions of r" but many intermediary results (in particular, radiation
conditions-estimates) are as well true for long-range potentials.

The spectral theory of the operator H starts with the following geometrical
construction. Let us introduce the set X of linear sums

of subspaces XOJ. The zero subspace X’ = 101 is included in the set X and
X itself is excluded. The index a (or b) labels all subspaces Xa E X and can
be interpreted as the collection of all those aj for which C X a. Let xa

and xa be the orthogonal projections of x E X on the subspaces X a and

respectively. Since X , EB splits into a tensor product

Let us introduce for each a an auxiliary operator

with a potential Va which does not depend on x,,. In the representation (4)
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where Ta = -Oxa acts in the space Ha = L2(Xa) and

are the operators in the space = Set 1{° == ~’, v° = 0, H’ = 0.
In the multiparticle terminology, index a parametrizes decompositions of an
N-particle system into rloninteracting clusters. The operator H a corresponds
to the Hamiltonian of clusters with their centers-of-mass fixed at the origin; Ta
is the kinetic energy of the center-of-mass motion of these clusters. Thus the

operator Ha describes an N-particle system with interactions between different
clusters neglected.

Scattering theory for the Hamiltonian H is formulated in terms of eigen-
values Aa and eigenfunctions of the operators Ha. Denote by Pa the
orthogonal projection in ~a on the subspace and let Pa = I ® pa.
Clearly, the orthogonal projection Pa commutes with Ha and its functions. Set
also H° = T, Po = I. The union over all a

is called the set of thresholds for the operator H.

We need the following basic result (see [16, 17, 18]) of spectral theory of
multiparticle Hamiltonians. It is formulated in terms of the auxiliary operator

Proposition 4 Let Assumption 2 hold. Then the set To is closed and count-
able and eigenvalues of H may accumulate only at To so that the "exceptional"
set T = To U is also closed and countable. Furthermore, for every
A E R B T there exists a small interval A such that the estimate (the
Mourre estimate) for the commutator holds:

Let Q be multiplication by (x2 + 1)1/2 . Below A is always an arbitrary
bounded interval such that A n l’ == 0, where A is the closure of A. One of the
main consequences of (7) is the following
Proposition 5 Let Assumption 2 and 3 hold. Then for any r &#x3E; 1/2 the

operator Q-r (T + I) is on A.

This assertion is usually called the limiting absorption principle. Its proof
under Assumptions 2 and 3 can be found in [19].
Corollary 6 The operator H is absolutely continuous on E(A)R. In partic-
ular, it does not have any singular continuous spectrum, i. e.
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The basic result of the scattering theory for N-particle Hamiltonians is the
following
Theorem 7 Suppose that functions V’ satisfy Assumptions 2 and 3 and are
short-range, i. e. V’ = V,,. Then the wave operators

exist and are isometric on The ranges of W! are mutually or-
thogonal and the asymptotic completeness holds:

Our assumptions on V" are somewhat larger than those of I. M. Sigal
and A. Soffer [10] or G .M. Graf [11] since we do not require anything about
derivatives of V".

Theorem 7 gives the complete spectral analysis of the operator H. Actually,
by the relation (9), H is the orthogonal sum of its restrictions on different
subspaces In virtue of the intertwining property HWa = 
each of these restrictions is unitarily equivalent to the operator Ha considered
in the space PaH. Actually, if f and f! = (Wa )* f E Pa1í, then

Furthermore, according to (6)

Thus the absolutely continuous part of H is unitarily equivalent to the orthog-
onal sum of the "free" operators Ta shifted by the eigenvalues of the operators
Ha

Theorem 7 describes also the asymptotics as t ~ ~oo of the evolution
U(t)f governed by the Hamiltonian H. Indeed, the first equality (10) ensures
that

which is basically equivalent to the asymptotic completeness. In virtue of (11)
functions Ua(t) f/ admit an explicit representation:

4. The main analytical result of our approach is formulated as certain esti-
mates which we call radiation conditions-estimates. Compared to the limiting
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absorption principle they give an additional information on the asymptotic
behaviour of a quantum system for large distances and large times. To give
the precise formulation let us introduce the gradient B7 Xa in the variable ra (in
particular, = V is the gradient in the variable xo = x) and its angular
part B7~:&#x3E;:

Theorem 8 Let ra be a closed cone in Rd such that fanXb = fo} Xb.
Denote by Xa the characteristic function of ra. Suppose that Va are defined
by (3) where Va and Vía satisfy Assumptions 2 and 3. Then for all a the
operators

are H-smooth on A.

Remark. It is easy to see that

Therefore Theorem 8 gives us more information about U(t) f in the cone ra
than in rb. In particular, the most complete information is obtained in the
cone ro which does not intersect any X. On the contrary, the result of
Theorem 8 is trivial for a such that dim X ~ = 1.

Remark. The notion of H-smoothness can be equivalently reformulated
in terms of the resolvent of H. Thus radiation conditions-estimates given by
Theorem 8 also admit a stationary formulation.

Remark. In the two-particle case the result of Theorem 8 reduces to H-
smoothness of the operator Q-l/2B1(s) on any bounded positive interval sepa-
rated from the point 0. This corresponds to the angular part of the usual form
of the radiation conditions-estimates (see e.g. [20]). Note also that the result
of Proposition 5 (limiting absorption principle) definitely fails if r =1~2 (even
in the free case H = Ho). Thus the differential operator improves the
fall-off of (U(t) f )(x) at infinity.

The proof of Theorem 8 relies on consideration of the commutator of H
with a first-order differential operator

with bounded coefficients m 3. Actually, the function m is chosen as C°-

homogeneous function of degree 1 (all properties of m(x) are formulated for
~x~ I &#x3E; 1; in some neighbourhood of x = 0 we require that m(x) - 0). In the

two-particle case we can set rn(x) _ Jlolxl. In the N-particle case it should
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be modified in such a way that m(x) = m(xa) in some neighbourhood of each
Xa. If, furthermore, x is separated from all Xb such that Xa ct Xb, then
m(x) _ Jlalxal. Note also that, by the construction of m(x), a cone ra, where
rn(x) _ Jlalxal, can be made arbitrary close to all Xb C Xa. Finally, m(x)
should be a convex and positive function (for Ixl &#x3E; 1). Such a function m(x)
can be constructed averaging over allea of the family of functions

where 6~ are suitably chosen small positive numbers. These functions satisfy
all properties listed above except smoothness which is recovered by integration
of (15) with some smooth functions of variables ea. We emphasize that only
properties of rn(x) for large Ixl ] are essential. In a bounded domain m(x) can
be arbitrary.

The commutator w, M] is small in the following sense.

Proposition 9 Suppose that va is defined by (3) where v:,a and Via satisfy
Assumptions 2 and 3. Let m be C°°-homogeneo~cs function of degree 1 (for
Ixl &#x3E; l~ and let m(x) = m(xa) in some neighbourhood of Xa (for ixl &#x3E; 1).
Then

The proof of this assertion is based on the following observation. The

potential va depends on xa and is concentrated in a neighbourhood of Xa.
In this region m depends on x. only so that va and M essentially commute.
This is similar to the idea of G. M. Graf applied in [11] in the time-dependent
context.

The commutator of T with M equals

Since the matrix is nonnegative for Ixl &#x3E; 1 and

it follows that

where r is any region lying outside of the unit ball. Let Xa be the characteristic
function of the region ra where m(x) _ Simple calculations show that
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So combining Proposition 9 with (18) and (19) we arrive at the estimate (we
assume here that p  3)

The H-smoothness of the operator can be standardly deduced
from (20). Indeed, applying (20) to u = f t = U(t) f and integrating the identity

we obtain that

If f = E(A)f, then the first term in the right side is bounded by Cllfll2 because
the operator ME(A) is bounded. The second term admits the same estimate
by Proposition 5. Finally, H-smoothness of the operator ensures

H-smoothness of since the region ra can be chosen arbitrary close
to the subspaces Xb C Xa .

5. Our proof of asymptotic completeness demands preliminary consid-
eration of auxiliary wave operators with identifications which are first-order
differential operators

We set m(a)(x) = where the function m was constructed in the

previous part and
~ il-1. I I- ,

We require that each 7/~ E (0 ) ) , 7/~~ is homogeneous of degree 0 and
r~~a~(x) = 0 in some neighbourhoods of all Xb such that Xa ct Xb. If Xa C Xb ,
then 7/~) should not depend on xb in some neighbourhod of Xb. The partition
of unity with such properties can be constructed by the same procedure as the
function m. Actually, we define first a non-smooth function

where 0(s) = 1 for s &#x3E; 0 and 0(s) = 0 for s  0, and then obtain r~~a~(x~ by
means of averaging of (22) over all eb and ea.
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Theorem 10 Suppose that functions V’ satisfy the assumptions of Theorem
7 and Ed(A) = Ea(A; Ha). Then for all a the wave operators

exist.

To prove this theorem we verify that the triple H~°‘~, H, M(a) satisfies on A
the conditions of Proposition 1. Actually, according to (5)

The second and third terms can be estimated with the help of limiting absorp-
tion principle. Indeed, by the construction of m and r~~a~, the function m~a~
depends only on xa in some neighbourhood of Xa. Therefore by Proposition 9

with a bounded operator B. The operator Q-r (T + I ) is H- and ~-smooth
according to Proposition 5. A similar representation for Xa,
can be obtained due to the fact that r~~a~~x) = 0 in some neighbourhood of Xa
where va is concentrated. We emphasize that the short-range assumption is
used for the estimate of this term only.

The commutator z[TB M(a)] is again defined by (16) with m replaced by m(a).
The function satisfies (17) and hence can be taken into account by
Proposition 5. In order to estimate the operator

we use Theorem 8. Let A[~)(r) and be eigenvalues and normalized
eigenvectors of the symmetric matrix M~a~ x - {m~a~ (~) }. Clearly, ~~a~ (x)
are homogeneous (for I x I &#x3E; 1) functions of order -1 and p~a~(x) - of order 0.
Diagonalizing M~~~ ( x we find that L~a~ _ (7~)~B where

and = À(a). To prove smoothness of the operators
we need the following elementary observation.

Lemma 11 Suppose that m(x) = m( Xb) is a smooth homogeneous (for Ix I &#x3E;

1) function of degree 1 in some cone F. Let Àn (x) and eigenvalues
and eigenvectors of the symmetric matrix M(r) = Then vectors

x E r, Ixl &#x3E; 1~ corresponding to 0, belong to Xb and are
orthogonal to ~6.
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By our construction of m and 71 (a) we can find cones rb such that U6 rb = X,
rb satisfy the condition of Theorem 8 and m(a)(x) = m(a)(Xb) if x E rb.
According to Lemma 11 and the definition (14)

It follows that

Thus H- and Ha-smoothness of the operators KJa) is ensured by Theorem 8.
Putting all things together we arrive at Theorem 10.

6. Our goal now is to deduce Theorem 8 from Theorem 9. To that end we
introduce the observable

Its basic properties are formulated in the following
Theorem 12 Let M be the same operator as in part 4. Suppose that functions
(3) satisfy Assumptions 2 and 3. Then the wave operators (24) exist, are self
adjoint and commute with H. Furthermore, their ranges

Existence of the wave operators (24) can be verified quite similarly to The-
orem 10. The intertwining property of wave operators implies that M~(A)
commutes with H. We shall show that is positively definite on the
subspace Note the identity

where ft = U(t)f and ht = U(t)h. Element h E 7-l is arbitrary and f belongs
to some dense in ~-l set so that m ft are well-defined. Integrating (26) and
taking into account existence of the wave operators (24) we find that

and, in particular,

Since m(x) &#x3E; 0, (27) ensures that ~~I~(l1) &#x3E; 0. To prove that :f:M:!:(A) is

positively definite we use Proposition 4. In virtue of the identity Q2] = 2A,
it follows from (7) that
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if f belongs to the subspace E(A)H. Integrating twice this inequality we find
that for sufficiently large It ]

Comparing (28) with (29) and considering that &#x3E; mo &#x3E; 0, for

Ixl ] &#x3E; 1, we obtain the inequality

Thus ±M±(A) is positively definite on In particular, (24) holds.

7. The difficult part of Theorem 7 is, of course, asymptotic completeness.
We start with its proof in the form (12).
Theorem 13 Under the assumptions of Theorem 7 for every f = E(A) f there
exist elements fa such that the relation (12) is fulfilled.

Proof can be easily deduced from the results obtained. Let M and be

the operators introduced in parts 4 and 5 respectively. According to (21)

By Theorem 12 every f E E(A)H admits the representation f = 
E so that the asymptotic relation

holds. On the other hand, Theorem 10 ensures that for every a

where

Summing up the relations (32) and taking into account (30) we find that

Comparing it with (31) we arrive at (12).
It remains to derive Theorem 7 from Theorem 13. Note that in the proof of

Theorem 13 we have used only existence of the second set of the wave operators
(23). Using existence of the first set of these operators and the equality (13)
we can prove that the wave operators Ha; M Ea(A)) also exist. This
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implies existence of because, according to Theorem 12, for
every g E we can find elements ga such that

Elements f = Ea(A) f for different A, A n T = 0, are dense in 1{ = 
so that operators W’(H, Ha; I ) exist. In virtue of (13) orthogonality of ranges
of the wave operators (8) is an automatic consequence (see e.g. [14]) of their
existence.

Admitting that Theorem 7 is already proven for all operators Ha and taking
into account (6) we can rewrite (12) as

Multiplying both sides by U*(t) we obtain that every f E E(A)x belongs
to the left side of (9). Since elements f = E(A) f are dense in the subspace
~(a‘)(H), this concludes our proof of the asymptotic completeness.
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