@article{SEDP_1991-1992____A20_0, author = {Temam, Roger}, title = {Vari\'et\'es inertielles dans le cas non auto-adjoint. {Applications} aux vari\'et\'es lentes}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:20}, pages = {1--11}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1991-1992}, mrnumber = {1226499}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1991-1992____A20_0/} }
TY - JOUR AU - Temam, Roger TI - Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:20 PY - 1991-1992 SP - 1 EP - 11 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1991-1992____A20_0/ LA - fr ID - SEDP_1991-1992____A20_0 ER -
%0 Journal Article %A Temam, Roger %T Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:20 %D 1991-1992 %P 1-11 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1991-1992____A20_0/ %G fr %F SEDP_1991-1992____A20_0
Temam, Roger. Variétés inertielles dans le cas non auto-adjoint. Applications aux variétés lentes. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1991-1992), Exposé no. 20, 11 p. http://archive.numdam.org/item/SEDP_1991-1992____A20_0/
[1] Attractors of evolutions equations, North-Holland, Amsterdam, 1992. | MR | Zbl
, ,[2] Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150, (1985), p.427-440. | MR | Zbl
, , , ,[3] Manifolds for Dissipative Partial Differential Equations, Springer-Verlag, New York, (1989). | MR | Zbl
, , , and[4] Attractors representing turbulent flows, Mem. Amer. Math. Soc., (1985), vol.53. | MR | Zbl
, , ,[5] On the dimension of the attractors in twodimensional turbulence, Physica D., 30, (1988), p.284-296. | MR | Zbl
, , ,[6] Inertial manifolds and the slow manifolds in meteorology, Diff. Int. Equ., 4, (1991), p.897-931. | MR | Zbl
, ,[7] Solutions of the incompressible Navier-Stokes equations by the nonlinear Galerkin Method, to appear. | MR | Zbl
, , ,[8] Variétés inertielles des équations différentielles dissipatives, C.R. Acad. Sci. Paris, Serie I, 301 (1985), 139-142. Inertial manifolds for nonlinear evolutionary equations, J. Diff. Eqs., 73 (1988), 309-353. | MR | Zbl
, , ,[9] Introduction to the Theory of Linear non Selfadjoint Operators, Translations of Mathematical Monographs, vol, 18. Amer. Math. Soc., 1969. | MR | Zbl
, ,[10] Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol 25, AMS Providence. | MR | Zbl
,[11] The nonlinear Galerkin method in computational fluid dynamics, Applied Numerical Mathematics, 6, (1989) 190, p.361-370. | MR | Zbl
, , ,[12] A nonlinear Galerkin Method for the Navier-Stokes equations, Computer Math. in Appl. Mechanics and Engineering, 80, (1990), p.245-260. | MR | Zbl
, , ,[13] Finite dimensional inertial forms for the 2D Navier-Stokes equations, University of Minnesota, AHPCRC, Preprint, 1991. | Zbl
,[14] A dynamical system generated by the Navier-Stokes equation, J. Soviet Math. 3, n°4, (1975), p.458-479. | Zbl
,[15] On the determination of minimal global B- attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Institute, Leningrad 1987.
,[16] Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comp. Mech., to appear | MR | Zbl
, , ,[17] Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, (1980), p.958-968. | MR
,[18] Inertial manifolds,for reaction-diffusion equation in higher space dimension, J. Amer. Math. Soc., I, (1988), 805-866. | MR | Zbl
, ,[19] Inertial manifolds, The mathematical Intelligencer, 12, n.° 4, (1990), p.68-74. | MR | Zbl
,[20] Infinite Dimensional Dynamical Systems in Mechanics and Physics Applied Mathematical Sciences, vol. 68, Springer Verlag, New York, 1988. | MR | Zbl
,[21] Nonlinear initialization on an equatorial Beta-plane, Mon. Wea. Rev., 107, (1979), 704-713.
,