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Existence

The compressible Euler equations are given by

where p &#x3E; 0 is the density, u E IR3 is the velocity, and p is the pressure of an

ideal, compressible, isentropic gas or fluid.

Consider the initial value problem for initial values which are a small

perturbation of a constant state
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with

The dependence on e of the corresponding solution will be suppressed. The

lifespan of a solution to this initial value problem is the largest time Té for

which the solution exists and is Cl on the strip ~0, T~ ) x IR3.
Local existence of a regular solution follows since the equations can be

rewritten in symmetric hyperbolic form, ~5~. Define the new variables,

where c = J$p%9 is the sound speed. The new equations are

with initial conditions of order

Çô , vi E are uniformly bounded, and the sound speed is now equal to

unity.
~ 

Letting

The system has the form



v- 3

where the B’s are symmetric constant matrices and the nonlinearity F(w) is

quadratic.
The operator P(a) is called the linear acoustical operator. It is invariant

under translations, rotations, and changes of scale. The translations are

generated by the usual partial differential operators:

The spatial rotations are generated by:

with

and

The appearance of the matrices ti is due to the fact that the dependent and

independent variables transform simultaneously under rota.tions. Changes in

scale are generated by the operator:

The invariance of P( 8) under these families of transformations leads to
the following commutation relations:
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Denote this collection of operators by

and define the generalized energy norms by

Theorem 1: (Local existence, [6J.) There exists a solution

where

For every k &#x3E; 4, the energy satisfies the uniform botind

Moreover, if the inital data are compactly supported, then

where R is the radius of the support of the initial data.

This result is proved by deriving a standard energy estimate for the deriva-

tives and applying the cla.ssical Sobolev inequality.
The lower bound on the lifespan can be improved by considering irrota-

tional initial velocity. To get this improvement, perform energy estimates

with the generators of the Lorentz group, i.e. add the Lorentz rotations to

G.



V- 5

where the matrices B are those appearing in the definition 01 

The Euler equations are not invariant under the Lorentz rotations, and

therefore, the Lj do not commute with P( 8). Nevertheless, (P(a), is a

vector which contains only a component of ~7 x u, the vorticity. It measures

the amount by which the Lj fail to commute with P(a). It is typical that

for quadratically nonlinear Lorentz invariant hyperbolic equations in three

space dimensions that local solutions are almost global, [2]. Irrotational flow
means that the vorticity vanishes for all time, thus one expects a stronger
local existence result in this case since the Lj now commute with the linear

operator .P(8).
This result [7] is obtained through the use of another energy norm:

Theorem 2: If V x vo = 0, then the lifespan has the lower bound Te &#x3E;

The energy has the uniform stability estimate

The key is to obtain the energy estimate:
~ ,

Then apply the following Sobolev-type inequality.

Lemma 1: (Klainerman [3]) Let 0(t, x) be an arbitrary smooth function.
Then for all (t, x) E IR,+ x IR3,

zuhere the constant C is independent of ~.
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It is the decay provided by this inequality, not present in the usual Sobolev

inequality, which leads to almost global exstence. Its use is possible due to

the inclusion of all the generators r into the energy norm.

Think of the flow as small amplitude waves superimposed on an underly-

ing incompressible flow. If irrotational, then the incompressible part is zero,
hence the enhanced lifespan. Practically nothing is known for incompressible
flow in three dimensions. Such flows certainly do not decay in time (based on
what is known in 2D). Numerical evidence show that they grow rapidly (1~,
and they are suspected to blow up in finite time. In general, the incompress-
ible flow interacts with the acoustical waves. The acoustical waves radiate

to infinity, and at far distances they do not interact with the incompressible

flow, as the following result illustrates, [7].

Theorem 3: Consider initial velocity of the form

with

Then, on the set

the solution w with data eeo, evo (with lifespan &#x3E; Cle) agrees with the irrota-
tional solution Wl with data eeo, evol (and with lifespan T, . 1).
Thus w can be extended for large times in an exterior do~nain.

Formation oi singularities

The following result [6] shows that the almost global existence result is sharp.
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Theorem 4: Suppose that the initial data Wo = (e4o, éVo) is supported in

1 Ixl  R} and satisfies 4o(x) &#x3E; 0, z . vo(x) &#x3E; 0. on some annulus (Ri 
lx 1  R}. Then there is fixed constant Co &#x3E; 0 such that the Cl local solution

w cannot be extended to the region

for T &#x3E; exp( Col e,2). ln particuiar, the solution does not exist past time T =

exp( Col e,2).

This is proved by obtaining a difleiential inequality for the function

of the form

together with the lower bound

The particula.r form of the function F(t) is not important for this exposition
except to illustrate that the analysis is performed near the front of the dis-

turbance. Thus, singularities do a.ctually appear at the front (after a long
time) even if they may have appeared at a much earlier time far behind the
front.

The Incompressible Limit

Let w be a solution of (1),(2),(3) with (by theorem 1)
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If w is rescaled according to

then w = (e, il) is a CI solution of:

defined for t  To. The sound speed is now proportional to 6 ~, and the

initial data is

The uniform bound for IIw(t, .)IIH4 yields

This bound was obtained in [4] working directly with the equations for w,
and it can be used to show that if the initial data is fixed and incompressible,
i.e.

then as ~ -~ 0, the solution j, à converges to a solution of the incompressible
Euler equations

with initial data

uniformly on [0, To) x R,.
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The uniform bound for and a Sobolev inequality lead to

This estimate was discovered and used in [8] to show that the compressible
flow converges uniformly on intervals of the form [6, To] to a solution of the

incompressible Euler equation, for arbitrary initial data à(0). The data sat-
isfied by the incompressible limit is the projection of w(O) onto the subspace
of incompressible data.

Relationship between the lifespan of compressible and
incompressible flow

Any improvement in the life span of w leads to global solutions of the incom-

pressible Euler equation.

Theorem 5: Suppose that for every e &#x3E; 0, there exists a CI solution w(t) of
the compressible Euler equations on [0, Te] x IR3 such that E4[w(t)] = 0(£).
Assume that the initial data is incompressible, i. e.

I f lim inf ETe = oo, then the incompressible Euler equations have a global C’
E-~o

solution.

For an arbitrarily large time T the preceding argument works for suf-

ficiently small é. Construct a smooth solution of the incompressible Euler

equation with the given initial data defined on [0, T].
Conclusion: Blow-up for incompressible Euler implies that the lifespan
is most likely sharp for compressible flow.
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