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NEW CHANNELS IN THREE-BODY LONG-RANGE SCATTERING

D.Yafaev
Université de Rennes

Abstract

A system of three one-dimensional particles with one of pair potentials
V’(x’) decaying at infinity as Ixal-p, 0  p  1/2, is considered. It is shown
that such a system can possess channels of scattering not included in the usual
list of channels called the asymptotic completeness.

1. INTRODUCTION

An aim of the scattering theory is to find the asymptotics as t --&#x3E; o0 of the solution

u(t) = exp(-iHt) f of the time-dependent Schrôdinger equation with a Hamiltonian
H = -2-’A + V(x) in the space 1-l = If f is an eigenvector of H, i.e.
H f == Àf, then obviously u(t) = exp( -iÀt)f. Suppose now that f is orthogonal
to the subspace spanned by all eigenvectors. In the two-body short-range case
when Y(x) _ p &#x3E; 1, the asymptotics of u(t) is the same as that for the
free system, that is

for some Jo E 1t and Ho = -2-1~ ( "N" means that the difference of left- and right-
hand sides tends to zero in the space One can rewrite (1.1) in an equivalent
way as

where t) = x2(2t)-1, g = exp(i7rd/4)fo and fo is the Fourier transform of fo.
The relation (1.2) holds true (see e.g. [1]) also for long-range potentials satisfying

the condition

In this case the phase function t) depends on a potential V(x). The asymp-
totics (1.2) shows that, if f belongs to the absolutely continuous subspace 

of the operator H, then the solution (exp(-iHt) f ) (x) "lives" in the region
where t.

The situation is more complicated in the many-body case when
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and xa are orthogonal projections of x E on some given subspaces xa C Rd. Set
Xa = xa. The three-body case is distinguished by the assumption Xa n x3 =
101 for Q~ 7~ ~3. Suppose first that all pair potentials Va are short-range, i.e. that

they satisfy the condition = for some p &#x3E; 1. The relation (1.1)
(or (1.2) with = x2(2t)-1) is fulfilled for f from some subspace 1Ío C *

In general, 7io 7~ ~-l(a~) and the orthogonal complement ~-l(~) (Dho is determined by
the point spectra of pair Hamiltonians I-I’ - -2-l0xa + Va acting in the spaces
Ha = L2(xa). Let us introduce their eigenvalues Àa,k and eigenvectors For

every couple there exists a subspace 1Í(ac) such that for any f E 1Ío:,k

= (1.4)

for the function = ~(~)’~ 2013 and some g E L2 (X,,,,). Note that

the subspaces 7io and 1lo:,k are constructed as images of the corresponding wave
operators Wo : H - 1Í and -; 1Í. The basic result of the scattering
theory, called the asymptotic completeness, is that the sum of all subspaces Ho and

exhausts the absolutely continuous subspace 1Í(ac) of the operator H. Actually,
?-~(a~) can be decomposed into the orthogonal sum

This result was first obtained by L. D. Faddeev [2] under some additional assump-
tions. The optimal formulation is due to V. Enss [3].

For three-body systems with long-range pair potentials Va: the answer is almost
the same if V"(xa) satisfy the condition (1.3) with some p &#x3E; V3 - 1 as functions
of x’. In this case again the asymptotic completeness (1.5) holds. For f E Ho the
asymptotics (1.2) and for f E the asymptotics (1.4) with suitable functions

t) and t) are fulfilled. This result was obtained by V. Enss [4, 5] and
carried over by J. Derezinski [6] (by a method différent from [4, 5]) to an arbitrary
number of particles. Note also that in.the case p &#x3E; 1/2 the asymptotic completeness
(1.5) was established in the papers [7, 8] under some additional assumptions. We
emphasize that for f E the solution exp(-iHt) f is localized in the variable
xa and, on the contrary, t. Thus such solutions play an intermediary role
between those for f E 1Í(p) and f E ’Ho.

Our goal is to show that for some three-body systems with sufhciently slowly
decreasing pair potentials there exist channels of scattering different from (1.2) and
(1.4). Actually, we consider one-dimensional particles with one of pair potentials

where v« &#x3E; 0, 0  p  1/2, for large x’ &#x3E; 0. Other pair
potentials can be short-range. We construct a subspace 5 C of initial data f
such that for f E jj the solution ~(t) = exp(-iHt) f of the Schrôdinger equation
"lives" in the region where t and for a == (p + 1 ) /3  1/2. Such
solutions describe a physical process where particles of the pair a are relatively close
to one another and the third particle is far away. The pair a is bound by a potential
depending on the position of the third particle and this bound state is evanescent as
t 2013~ 00. Thus solutions u(t) for f E 5) are intermediary between those for f E 
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and f E 1-io- The subspace -çi is orthogonal to ?o and and the restriction of

the operator H on ç5 has the absolutely continuous spectrum which coincides with
R+. This contradicts, of course, the asymptotic completeness (1.5).

Note that existence of new channels for three-particle systems automatically
implies the same phenomena for systems of more than three particles. It suffices to

take a system where all particles but three are free and the system of these three
distinguished particles possesses a described channel.

It turns out that the asymptotic completeness is violated also for two-body sys-
tems with long-range potentials if one tries to relax the condition (1.3) on derivatives
of V(X).

Our concrete examples of existence of new channels of scattering rely on the
following general construction which is similar to that of [9]. We suppose that

but we do not make any special assumptions about a potential V(x) = V(xl,xl).
Let us introduce an operator

acting in the space Suppose that the operator has an eigenvalue
~(x1) and denote by the corresponding normalized eigenfunction. In the

particular case when V(x) does not depend on xi the operator (1.7) describes a
three-body system with only one non-trivial pair interaction. In this case both
channels (1.2) and (1.4) (where 0152 == 1) exist. We are looking for a generalization of
(1.4) in the case when - 0 as lxil ] - oo. In interesting situations the function
À(xi) decreases slower than Let us consider it as an "effective" potential
energy and associate to the long-range potential B(xl) the phase function t).
We will prove under some assumptions that for every g E there exists an
element f e ~~~~ such that

A set of these elements f is a subspace 5 C It is constructed as the range of
the corresponding wave operator t~ : H. The subspace &#x3E; is orthogonal
to if the wave operator for the pair Ho, H exists.

Existence of solutions of the time-dependent Schrôdinger equation with the
asymptotics (1.8) requires rather special assumptions which are naturally formu-
lated in terms of eigenfunctions xi) of the operator Hl (xi). It turns out that

typically the asymptotics of xi) as A(xi) - 0 has a certain self-similarity:

for some W E L2(X 1 ) and u &#x3E; 0. We prove the asymptotics (1.8) if (1.9) is fulfilled
for u  1/2. On the other hand, simple examples show that ( 1.9) for u &#x3E; 1/2 does
not ensure existence of solutions with the asymptotics (1.8). It is important that
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xl) can be chosen as an approximate solution of the equation Hl 
o.

A construction of channels (1.8) is discussed in Section 2. Concrete examples of
two- and three-body systems for which solutions of the type (1.8) exist are given in
Sections 3 and 4, respectively.

2. A GENERAL CONSTRUCTION

Let us, first, recall some simple results of the two-particle long-range scattering
theory. We discuss here only existence of wave operators and, following [10], define
them in the coordinate representation. Let us introduce a unitary operator 

in the space H = L(R) corresponding to the right-hand side of (1.2). Set Ho =

-2~~A, H = -2-1 ~ + V. Let X be the operator of multiplication by x2/2 in the
space The following assertion can be checked by an explicit calculation.

Proposition 2.1 Let the condition (1.3) be satisfied. Then there exists a function
t) such that for f E B {0})

Corollary 2.2 The wave operator

exists, it is isometric and the intertwining property holds.

Note that t) = x2(2t)-1 + t), where O(x, t) is an approximate solution
of the eikonal equation

Clearly, a function 4Jo depends on a long-range potential V. Denote by r the corre-
sponding mapping r : V H 4&#x3E;0.

We emphasize that Wo equals the product of the usual (perhaps, modified) wave
operator relating Ho and H and of the Fourier transform.

Our aim now is to establish the asymptotics (1.8). Let us formulate precise
assumptions on a function xl). We suppose that is an approximate
eigenfunction of the operator (1.7), i.e.

where
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for some E &#x3E; 0. Approximate "eigenvalues" should satisfy a usual condition
of long-range scattering:

With respect to itself we suppose that

as ( - oo. Furthermore, we require that auxiliary functions

satisfy the bounds

We emphasize that all assumptions on functions Y(XI,XI) and À(XI) are
used for sufficiently large IXII only. These conditions are well adopted to treat
functions with the asymptotics (1.9). Actually, suppose for a moment that
for some 7 E R there is the precise equality in (1.9) and that the function 
belongs to L2(X). Then Çu = 0, both conditions (2.5) are fulfilled and ;j; satisfies
(2.8) with 1- ~ = 2u. Thus the conditions , &#x3E; 0 and or  1/2 are equivalent.

Let us reformulate the asymptotics (1.8) in terms of the corresponding wave
operator. Define the function t) by the construction of Proposition 2.1 which
we apply to a function B(xi) (in place of V(x» in the variable xi (in place of x),
i.e. we set 4J = r À. Let Ul (t) be the operator of a modified free evolution in the
variable xl,

According to Proposition 2.1 for any f E 101) there is a bound

Let an isometric operator J : be defined by the equality

We prove existence of the wave operator

To that end it would suffice to verify that a function ul (t) = is a "good"
approximation to a solution of the time-dependent Schrôdinger equation, i.e.
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Initial data f can be chosen from some set dense in the space L2(Xl). Unfortunately,
for the function with the asymptotics (1.9) the estimate (2.12) can be
satisfied for E = 0 only.

It turns out that a better approximation to a solution of the Schrôdinger equation
is given by the formula

The following assertion can be verified by an explicit calculation.

Proposition 2.3 Let a function u(t) be defined by the equalities (2.13) where f E
Cô (Wl B 101). Suppose that a function satisfies for some u E R the
conditz’ons (2.5) - (2.8). Let functions Y(xi, xl) and A(xi), defined by (2.2), obey
(2.3), (2.,~). Then

This assertion implies the main result of this section. Below Xl is multiplication
by xi in the space L2(XI).
Theorem 2.4 À(XI) and Y(xl, xl) satisfy the assumptions
of Proposition ~. ~. Define the operator Ul (t) by the equality (2.9), = PA.
Then the limit (,~.11) exists and the wave operator W : ?~ is isometric.
The intertwining property HW = W X1 holds. In particular, the restriction of H on
the range R(W) of W has the absolutely continuous spectrum which coincides with
R+o

Solutions with the asymptotics ( 1.1) and ( 1.8) "live" in different regions of IR,d.
Let us give a precise formulation of this statement.

Theorem 2.5 Suppose that both wave operators (,~.11~ and (,~.1~ exist, for some
functions P and respectively. Assume that the function (. 6 satisfies the bound

Then the ranges of the operators W and Wo are orthogonal.

3. TWO-BODY POTENTIALS

We construct here a concrete class of potentials V (x) for which all the assumptions
of the previous section are satisfied. These potentials decay at infinity and thus
correspond to the two-body case.

Let (1.6) be some decomposition of and let

where we use the notation  y &#x3E;= (1 + lyI2)1/2. The function (3.1) is infinitely dif-
ferentiable and V(x) = O(lxl-P) as x --&#x3E; oo. Outside of any conical neighbourhood
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of the planes Xl and XI the bound (1.3) is fulfilled for arbitrary ~. This suffices for
existence of the wave operator (2.1). If q = 2, then V(XI,XI) is a radial function so
that this wave operator is, of course, complete. If 1  q  2, then the bound ( 1.3)
is satisfied (uniformly in directions of x) for ~~~ = 1 but is violated for ~~~ = 2. If

0  q  1, then (1.3) is violated already for 1 =1.
We shall prove that under the assumption

the wave operator (2.11) exists. This ensures that Wo fails to be complete.
Let us construct an approximate eigenfunction Xl) of the operator (1.7).

We consider it on spherically symmetric for dl &#x3E; 1 or odd for dl = 1 functions so
that H(xl) reduces to the operator

8 == 4 ~(d~ 2013 1)(~~ 2013 3), in the space L2 (R+) with the boundary condition ~(0) = 0.
We construct as an exact eigenfunction of a Schrôdinger operator ho (a)
with a simpler potential. To that end we replace in (3.3)  r &#x3E; by r and the
potential (a9 + by the first two terms of its Taylor expansion at the point
r = 0. This gives us the operator

with the discrete spectrum.
Let us choose a normalized eigenfunction W(R) -- corresponding to one

of eigenvalues A = On of the equation

The function W (R) decays exponentially as R - oo and equals the Airy function if

is a normalized eigenfunction of the operator ho(a) corresponding to an eigenvalue

The "potential" (3.6) satisfies (as a function of xl) the assumptions (2.4) and "eigen-
functions" (3.5) satisfy the conditions (2.5) - (2.8) if Q  1/2. The inequality a  1/2
is equivalent to q  2(1 - p).

The function Y(a, r) (see (2.2)) corresponding to (3.5), (3.6) equals

where

It follows that under the left assumption (3.2) the condition (2.3) is fulfilled, i.e.

IIY(a, .) Il = ~(a 1-~).
Applying now Theorems 2.4 and 2.5 we arrive at
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Theorem 3.1 Let a potential V be defined b y (3.1) where p and q satisfy (3.2).
Let A be any eigenvalue and W a corresponding eigenfunction of the equation (3.4).
Define and the "potential" À(XI) by the equalities (3.5), (3.6),
where a = xi &#x3E;, r = and set V = rÀ. Then the wave operator (,~.11) exists.
It is isometric and HW = WXI . The range of W is orthogonal to that of the wave
operator (~.l).

Remark that the above construction does not work in the case q = 2. Actually,
everything goes through but for the corresponding approximate eigenfunction ’ljJ(a, r)
we obtain the equality (3.5) (2 + p) /4 &#x3E; 1/2. Thus the first condition

(2.8) is not fulfilled. Of course, non-existence of the limit (2.11) should have been
expected, since the wave operator (2.1) is complete now.

We emphasize that for potentials (3.1) there exists a countable set of wave oper-
ators Wn corresponding to each eigenvalue An of the equation (3.4). The ranges of
these operators are, obviously, orthogonal to each other. Furthermore, one can in-
terchange the roles of variables xi and xi. This gives us a new set of wave operators
Wn whose ranges are orthogonal to those of Wn (and, of course, to that of (2.1 ) ) .

Note finally that the first assumption (3.2), i.e. 1- p  q, is of technical nature
and can probably be omitted.

4. A THREE-BODY CASE

Let us now consider the three-particle Hamiltonian H = 2-’A + V(x) where Y(x) _
+ V2(X2 ) and x"’ are orthogonal projections of x E lR,d on given subspaces

xa, a = l, 2, X2. We suppose that d = 2, dim X « = 1 and that X2 is not

orthogonal to X  . Then

The Hamiltonian H describes three one-dimensional particles of finite masses; one
of three pair interactions is zero. With respect to other pair potentials we make

Assumption 4.1 A bounded function 0 and 0 for 0. There

exists pi  0 such that is twicely differentiable for xl  pl  0 and

Assumption 4.2 A bounded function V2 equals V2(X2) == -v2Ix21-P, p E (0, 1/2),
V2 &#x3E; 0, for sufficiently large X2, x2 &#x3E; p2 .

Let us show that under these assumptions all conditions of Section 2 are satisfied.
Suppose for definiteness l = 1, m &#x3E; 0. For large positive values of the parameter
Xl, the potential

contains, as a function of Xl, two wells separated from one another by a positive
barrier VI. The first of them concentrated on the negative half-axis around a point
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-mxl gives rise to channels of scattering on bound states of the Hamiltonian H2 =

-Ax2 + Y2(x~). The second well -v2 (xl + a)-P, a := mxl &#x3E; P2, is located at
the positive half-axis and vanishes as xi - oo. Due to a barrier it is possible to
construct approximate eigenfunctions of the operator H(xl ) concentrated
on the half-axis xl &#x3E; 0. This construction is basically similar to considerations of
the previous section for q = 1. An additional difficulty is to show that an interaction
between wells can be neglected in the limit x, - oo.

Let us consider the equation (2.2). We need to find a comparatively simple
potential such that, first, the corresponding Schrôdinger equation may be resolved,
more or less, explicitly and, second, the arising error Y(xl, xl) satisfies the estimate
(2.3). We replace V(xl, xl) for 0 by the function and set

where Ai(y) is the (exponentially decreasing as y - oo) Airy function and parame-
ters À and A are related by the equality

For xl  0 we keep track of a barrier due to V’ and dispense with a well at
-a. More precisely, we replace by

where ( E Coo, ((Xl) = 1 for x~ E (-1, o), ((Xl) = 0 for xl  -2 and A with

sufficiently small 8. Clearly, a) - as a - 00. We fix any p  pi  0
and distinguish a solution of the equation

by its asymptotics as xl - -oo:

A construction of e- (xl, A, a) reduces to a consideration of a Volterra integral equa-
tion (cf. [11]). Note that

as a 2013~ oo for fixed xl (in particular, for xl = 0) uniformly for bounded A. Here el
is a solution of the equation + = 0 with the asymptotics (4.5) where
Q - VI.

We consider (cf. [12]) the matching condition for ’ljJ+ and e- at xl = 0 as an
equation for ~1 = A(a). By virtue of (4.2) it has the form
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Choose any zero -An of the Airy function: 0. According to (4.6)
the implicit function theorem shows that the equation (4.7) has a solution such
that A(a) - An as a - oo. Furthemore, A(a) = An + 0(a-e). Now we define
"eigenfunctions" ’l/J (Xl, Xl) by the equalities

where xl = M- 1 a. The constants c+ (a) and c- (a) are determined by the continuity
of the function at 0 and by the normalization = 1. The first
of them yields that c- (a) - a-°c+(a) and the second one shows that c+ (a) - a-a/2.

The potential A,,(xi) defined by (4.3) where A = An(a) obeys, of course,
the estimate (2.4). A verification of conditions (2.5) - (2.8) for and of the
condition (2.3) for Y(xl, xl) is different for xl &#x3E; 0 0. On the half-axis xl &#x3E;

0 it suffices to use, as in the two-body case, the self-similarity of the function (4.2).
The condition u  1/2 is equivalent to p  1/2. The contribution of the half-axis

0 is negligible because c- (a) - a-3a/2 and the function e- (xi, A(a), a), xl 
0, decays exponentially as xl -&#x3E; -oo uniformly in a and A.

= be a phase function constructed for x 1 &#x3E; 0 with respect
to the long-range potential (4.3) and let an identification Jn : L2(R+) - L2 (R 2)
be defined by the equality (2.10) where e - en. According to Theorem 2.4 the
wave operator (2.11) exists. Actually, one can replace Jn by a simpler identification
J.10) which is equivalent to Jn. Set An) for
xl &#x3E; 0 and 0 for xl  0; the constant c,, is chosen in such a way
that = 1. We stress that 0 but its derivative is not

continuous at xl = 0. Let J§/°&#x3E; = defined by the equality (2.10). Since

(Jn - 0 as t 2013~ oo, the wave operator Wn defined by the equality
(2.11 ) with respect to exists and equals that for Jn.

Assumptions 4.1 and 4.2 almost guarantee the existence of the wave operators
Wo and W2,k corresponding (see ( 1.4) ) to scattering on bound states ~2’~ (x2 ) of the
Hamiltonian H2. According to Theorem 2.5 the image R(Wn) of the wave operator
Wn is orthogonal to that of Wo whenever Wo exists. The scalar product of right-
hand sides in (1.4) for a = 2 and in (1.8) tends to zero as t --; oo. Therefore R(Wn)
and R(W2,k) are also orthogonal. Now we are able to formulate our main result.

Theorem 4.3 Let Assumptions 4.1 and ,~.,~ hold. Define a long-range potential
xi &#x3E; 0, by the equalzty (4.3), where A = An(a), a = mxl, and set 4ln = FAn-

Then the limit Wn dejined b y the equality (2.11) where J = exists. The wave

operator Wn : L2(R+) :-4 L2 (R2) is isometric. The ronges of operators Wn are
orthogonal (f or dij,f erent n) to each other and to the subspaces R(Wo) and R(W2,k) .

Let us finally mention that if the subspaces Hl and H2 are orthogonal then due
to the separation of variables the asymptotic completeness holds. In this case our
construction does not work because x2 = XI so that the equality (4.1) fails.
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