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1. Introduction

We are concerned with the well-posedness of the Cauchy problem for second-order strictly

hyperbolic operators whose coefficients are not Lipschitz continuous but only "Log-Lipschitz": for

a function a to be Log-Lipschitz (LL for short) means

whenever Ix - yl is small (say 1/2). We consider wave operators with LL coefficients,

and we prove two different type of results. First,we obtain a well-posedness result when the

coefficients are LL, second we deal with low regularity only in the time variable. We thus go beyond

the classical well-posedness result for hyperbolic operators with Lipschitz continuous coefficients.

To justify the choice of this LL regularity, we show by the construction of a counterexample

(modifying slightly theorem 10 in [4]) that LL comes up as the natural threshold beyond which no

well-posedness could be expected : the right-hand side of (1.1) cannot be replaced by

with ---+ +oo without ruining the existence of a distribution solution. Let’s describe now

the first kind of results. We are concerned with wave equations in divergence form,

with aij real-valued such that

aij = aji and there exists 6 &#x3E; 0 such that for any ~ E R’

and aij E LL (isotropically) i.e. (Yi E = x 

We shall prove that there exists a time T* &#x3E; 0 such that the following energy estimates holds

whenever 0  t  T* :
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where 0 &#x3E; 0 is given and the constant a &#x3E; 0 will depend on 0, and on the LL norm of the

coefficients of P. The energy estimate (1.5) will allow us to prove well-posedness results for the

Cauchy problem for P.

We should note here, as it appears in the inequality (1.5) that the well-posedness result we get

is obtained with a loss of derivatives, in contrast with the Lipschitz case. In the latter situation,

when the initial data uo, ul are respectively in the Sobolev spaces H3 and Hs-1, the solution of

the standard initial value problem is such that

In our case (the coefficients aij are LL), we obtain essentially

This result can be compared to Bahouri and Chemin’s result of [1] in which they conduct an

investigation of vector fields with LL coefficients in connection with problems in fluid mechanics

(see also [3]). The second author of the present paper wishes to thank J.-Y. Chemin for useful

discussions on these topics.

The second part of our work is concerned with well-posedness in the Coo class for a wave

operator in IR,t x 

where L is strictly hyperbolic i.e. (aij) satisfy (1.3). The main point here is the weak regularity

assumption on the coefficients aij (t, x): we assume that aij are LL in the time variable t, smooth

in the space varia.bles ~. So aij (t, .) are smooth (COO) functions such that

when it - 81  1/2. We consider for instance the initial value problem
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with smooth uo, ul . vVe find a unique solution u(t, x) depending continuously on the data uo, ul

in such a way that

More precise and general statements will be given in section 2. It should be pointed out that,

whenever the coefficients depend only on the time variable, Colombini, De Giorgi and Spagnolo in

[4] already proved such a result. Their paper was our starting point, and we somehow microlocal-

ized their energy estimates, using a Littlewood-Paley decomposition. On the other hand, in [4],

the authors obtained well-posedness in the Gevrey class for H61der continuous coefficients (still

depending only on the time variable). Nishitani [8] and Jannelli [7] extended these results to oper-

ators whose coefficients are H61der continuous in time, Gevrey in the space variables. Moreover, as

mentioned above, in [4] a counterexample is given showing tha.t one-dimensional wave equations

with H61der-continuous coefficients are not well-posed: there exists a(t) &#x3E; 1 , a E n Cs, (Cs is
31

the H61der class of index s) such that the initial value problem

has no distribution solution for some choice of smooth uo, ui .

We improve the result of [4] on this matter and we show that the function a of (1.12) can be

chosen satisfying

with p(r) --; +oo.
r-i o+

For instance if we denote by A the space of functions satisfying (1.13) with = log log r~ we

have,

and we see that the class A is too large to expect existence of a solution.

Nloreover in [6] an example of a non-solvable strictly hyperbolic equation with C1-° coefficients

is given. Some more counterexamples are given in [5] about non uniqueness for the Cauchy problems
for strictly hyperbolic equations with C’-’ coefficients.
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2. Statement of the results

We need first to introduce a

Definition 2.1 Let a be a function in We set

We define the set of Log-Lipschitz (LL) functions as the space of functions a such that 

+00.

Let’s note that there is no difficulty to extend this definition to the case where the source and

the target of a are metric spaces. We note also that the inclusions of (1.14) are strict inclusions.

The LL space is a Banach space with the [[ . IILL norm.

To state our first energy estimate we need to deal with an operator on divergence-form: Let’s

consider in JRl+n = R x IR,

where the matrix is real, symmetric and satisfies

for any ~ E lR,n, (t, x) The coefficients are assumed to be (def. 2.1). The

operator M is a first order operator :

with

for some positive numbers w, K.

Theorem 2.1 Lei 0  0  1/4 be given. Lei P be given by (2.2-5). There exists ,Q &#x3E; 0,

T* &#x3E; 0, C &#x3E; 0 such that for 0  t  T*, u E 
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Here ,Q = iöa( P), where a(P) is a positive constant depending only on the LL norm of the (aij),
0

the CLV and C’ norm of the coefficients of 1B1 (cf.(2.4), (2.5)), 80 given in (2.3), T* = .
It would possible to state theorems of well posedness with finite speed of propagation for the

support for global problems. On the other hand it is also easy to derive local existence results for

the Cauchy problem from the previous energy estimates. However, to get a local well-posedness

result would require a local uniqueness theorem which is not a straightforward consequence the

previous energy estimates.

We consider now a strictly hyperbolic operator in IR l+n = Rt x IR’

where, in addition to the requirements (2.2-5), the coefficients ai~ satisfy:

The operator M is a first order operator as in (2.4) such that

are smooth (C’) for each fixed t,

We state now our second energy estimate result.



XVIII- 6

Here (3 = 1 a(L), 0:( L) is a positive constant depending only on the norms of the functions ino

(2.9), (,.10, (,.1 , bo is (,. , T* = !.
We now state a theorem analogous to theorem 2.2 for the derivatives of u. Although its proof

is rather standard, we should pay attention to the phenomenon of loss of derivatives ({3 &#x3E; 0 in

(2.13)).

We define for L given by (2.7-12)

where 1

Theorem 2.3 There exists C(n) depending only on the dimension such that if L is given by

we get that for any m &#x3E; 0, there exists Cm such that for u E 

The important fact here is that T* although finite is independent of m.

The next theorem will give a strong argument in favour of the class LL since we provide a

counterexample for a one-dimensional wave equa.tion whose speed has a modulus of continuity as

close as we wish of the LL modulus It I ( log 
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Theorem 2.4 Let 0 be a positive function defined on a neigliborhood of +oo in R, such 

is increasing, concave, ’Ø( +00) = +00.

Then, there exists a function a(t), defined on t &#x3E; 0 valued in [1/2, 3/2] such that, for it - sl

small enough,

and smooth functions uo, ul E C°°(IR) such that tlze initial value problem

has no solution in Co([O, 1], Ð’(JR)).

3. Properties of LL functions

We give here a list of properties of LL functions without providing the proofs which will be

given in a forthcoming paper. We start with a

Definition 3.1 Let w be a positive function defined on a neighborhood of +oo in IEI,. We’ll

say w is a weight if

(3.1) w is monotone increasing, and +oo

(3.2) there exists No such that is bounded,

3.3 ) f or any positive bounded.

For the construction of our counterexample, we will use the following generalization of the LL

class (see def. 2.1).

Definition 3.2 be a weight (i.e. satisfying def 3. 1). Let u be a function in 

The function u will be said L°*’L if, for so7-ne 6 &#x3E; 0, such that [log t, +00[,
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Let’s note that LidL = LL (see def. 2.1). have the following characterization for the space

L~’L. We use below the standard notations for the Littlewood-Paley decomposition

For v integer &#x3E; 1 we set ’PI’ (Ç) = ’P( Jv- ) , %vith ~o smooth, supported in a ring

po smooth, supported in a ball, 1 near the origin,

Proposition 3.3 Lei w be a ’weight (def.3.1). The following statemenis are equivalent:

Proposition 3.4 be a weight (def. 3.1). There exists No &#x3E; 1 and Co such that the

L’~L norm (3.5) is equivalent to

Moreover, if u E (pv defined in (3.3)), v &#x3E; No,

Proposition 3.5 Let w be a weight and let a E and s real Isl  1. Then the

multiplication operators u ~ au is conlinaous from 77~ 2013~ HS :

where C(s, n) is a constant depending only on s and on the dimension.

Proposition 3.6 Let cv be a weight (def ~3.1), a E L‘~’L (def. 3.2), then there exist No and

Co such that the followz’ng estÍ1nate holds for Il &#x3E; No
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4. Sketch of Proof for the energy estimate

Let’s study only a model case for our energy estimate. Let u(t, x) (t E Ill, x E a solution

to

with a &#x3E; 1. We consider

and we set

where u stands for the Fourier transform in the :r variable,

For the simplicity of our exposition, let’s assume a(t, x) is LL in the t variable, Coo in the x

variable. In this case, the commutator [~o,, a] doesn’t give rise to any difficulty since ~ov acts only

in the x variables. The reader must be warned that the handling of this commutator is non trivial

in the first part of our work when a is isotropically LL. Let’s compute, with Dx = .1-L

where A, &#x3E; 0 is to be chosen later. We have to deal with the low regularity of a in the t-variable:

this leads us to introduce a mollified version for a. We set
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since a &#x3E; 1. It is a matter of routine to prove

We get from (1.21)

Using the initial conditions, we get, integrating by parts, using 1 ,

We choose now

with ,Q &#x3E; 0 to be chosen later. we get

Using now the spectral localization of u, we obtain:
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Now, if ~i is chosen so that

we obtain

This energy estimate gives a control of + and, since ÀII = 3v, this

amounts to control

which explains the loss of derivatives we referred to earlier.

For commutation purposes, we have to consider the following kernel on 

and we state the following

Lemma 4.1 The operator h(8) froin to with kernel given by (l,.l~~ is bounded

with a norm independent of t, provided that 0  t  T  118,3

The norm involves only the x-regularity, that is
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