@article{SEDP_1995-1996____A19_0, author = {Rouleux, M.}, title = {R\'esonances de {Feschbach} en limite semi-classique}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:19}, pages = {1--11}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1995-1996}, mrnumber = {1604374}, zbl = {0979.35500}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1995-1996____A19_0/} }
TY - JOUR AU - Rouleux, M. TI - Résonances de Feschbach en limite semi-classique JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:19 PY - 1995-1996 SP - 1 EP - 11 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://archive.numdam.org/item/SEDP_1995-1996____A19_0/ LA - fr ID - SEDP_1995-1996____A19_0 ER -
%0 Journal Article %A Rouleux, M. %T Résonances de Feschbach en limite semi-classique %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:19 %D 1995-1996 %P 1-11 %I Ecole Polytechnique, Centre de Mathématiques %U http://archive.numdam.org/item/SEDP_1995-1996____A19_0/ %G fr %F SEDP_1995-1996____A19_0
Rouleux, M. Résonances de Feschbach en limite semi-classique. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1995-1996), Exposé no. 19, 11 p. http://archive.numdam.org/item/SEDP_1995-1996____A19_0/
[Ba] Asymptotique des largeurs de résonances pour un modèle d'effet tunnel microlocal microlocal. Thèse U. Paris Nord, 1995
[Be] Quantal phase factors accompying adiabatic changes. Proc. R. Soc. London A 1984. p. 45-57. (reprinted in [ShWi]) 2. Asymptotics, Superasymptotics, Hyperasymptotics, in: Asymptotics beyond all orders. Segur, ed. Plenum Press N.Y. 1991. | MR | Zbl
1.[CdVPa] Parisse 1. Equilibre instable en régime semi-classique I. Concentration microlocale. Comm. Part. Diff.Eq. 252, 1993. 2. Equilibre instable en régime semi-classique II. Conditions de Bohr Sommerfeld. Ann. Inst. H. Poincaré. Phys. Théorique. 61(3) 1994. p.347-367 | Numdam | MR | Zbl
de[CoDuSe] The Born-Oppenheimer approximation, in: Rigorous atomic and Molecular Physics, Velo and Wightman, eds. Plenum Press, 1981, p.185-212.
[DeDi] Dillinger Contribution á la résurgence quantique. Thèse. U. Nice, 1991
[DuMe] Meller A simple model for predissociation, in: Operator Theory: Advances and Applications. Vol. 70, Birkhäuser. | MR | Zbl
[Gr] Résonances par correspondance. Séminaire EdP, Ecole Polytechnique. 1994-95 Exposé no 23 | Numdam | MR | Zbl
[GrSj] Sjöstrand Microlocal Analysis for Differential Operators. Cambridge University Press 1994. | MR | Zbl
[Ha] Molecular propagation through electron energy level crossings. Memoirs A.M.S. 536, 111, 1994 | MR | Zbl
[HaJo] Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Preprint CPT-95/P. 3215, 1995.
[HeSj] 1. Résonances en limite semi-classique. Bull. Soc. Math. France 114(3) 1986. Mémoire no 24/25. 2. Semiclassical analysis for Harper equation III. Cantor structure of the spectrum. Bull. Soc. Math. France 117(4) 1989. Mémoire no 39. | Numdam | MR | Zbl
[HeMa] Martinez Comparaison entre les diverses notions de résonances. Helv. Phys. Acta 60, 1987 p.992-1008 | MR
[Hu] Distorsion analyticity and molecular resonances curves. Ann. I. H. P. Phys. Th. 45(3), 1986 p.485-494 | Numdam | MR | Zbl
[Iv] Semiclassical Microlocal Analysis and Precise Spectral Asymptotics. Preprint Ecole Polytechnique, 1990, disponible aussi par: ftp://www.scar.toronto.edu/pub/math.preprints/ivrii/Book. | MR | Zbl
[JaSe] Exponential approach to the adiabatic limit and the Landau-Zener formula. Preprint Caltech, 1994. | MR | Zbl
[Jo] Proof of the Landau-Zener formula. Asympt. Anal. 9(3), 1994 p.202-259 [KaRo] Forme normale d'un hamiltonien à 2 niveaux près d'un point de branchement (limite semi-classique.) C.R. Acad. Sci. Paris I 117 1993. p.359-364 | MR | Zbl
[KlMaWa] On the Born-Oppenheimer approximation of wave operators in molecular scattering theory. Comm. Math. Physics, 152, 1993, p.73-95 | MR | Zbl
[KIMaSeWa] On the Born-Oppenheimer expansion for polyatomic molecules, Comm. Math. Physics, 143, 1992, p.606-639 | MR | Zbl
[Ko] J. Korsch Semiclassical description of resonances, in: Resonances, Brändas Elander, eds, Lect. Notes Phys. 325, Springer, 1989 p.253-280 | MR
[LaLi] Physique Théorique. Mécanique Quantique, Mir, 1967. | Zbl
[Ma] Résonances dans l'approximation de Born-Oppenheimer. J.of Diff. Eq. 91, 1991, p.517-530. 2. Estimates on complex interactions in phase space. Math. Nachr. 167, 1994 p.203-257 | Zbl
1.[MaMes] Resonances of diatomic molecules in the Born- Oppenheimer approximation. Comm. Part. Diff. Eq. 19 (7 et 8), 1994, p.1139-1162 | MR | Zbl
[Mä]Spectral asymptotics for Hill's equation near the potential maximum. Asymptotic Anal. 5 1992, p.221-267 | MR | Zbl
[Me] Thèse U. Toulon, 1995
[MöKo] Semi-classical complex energy quantization for coupled equations: Feshbach resonances and predissociation. Phys. Rev. A 34(6), 1986 p.4717-4721
[Na] On an example of phase-space tunneling. Ann. I.H. P. Phys. Th. 63(2), 1995, p.211-229 | Numdam | MR | Zbl
[N] Résonances semi-classiques pour l'opérateur de Schrödinger matriciel en dimension 2. Ann. I.H P. Phys. Th. 1995 | Numdam | Zbl
[Ra] Ion-atom scattering within a Born-Oppenheimer framework. Dissertation T.U. Berlin, 1986.
[Ro] Feshbach resonances in the semi-classical limit. Preprint CPT/P.3230, 1995
[ShWi] Wilczek Geometric Phases in Physics. World Scientific, Vol 5, 1989 | MR | Zbl
[Sj] Singularités analytiques microlocales. Astérisque 95 1982. 2. Density of states oscillations for Magnetic Schrödinger operators. In: Bennewitz (ed.) Differential Equations and Mathematical Physics 1990. Univ. of Alabama, Birmingham. p.295-345 3. Function spaces associated to global I-lagrangian manifolds. Preprint Ecole Polytechnique no 1111, 1995. | Numdam | MR | Zbl
1.[So] Born-Oppenheimer expansion for excited states of diatomic molecules. C. R. Acad. Sc. Paris I, 320, 1994 p.1091-1096 | MR | Zbl