@article{SEDP_1996-1997____A15_0, author = {Ralston, James}, title = {The {Role} of {Green{\textquoteright}s} {Functions} in {Inverse} {Scattering} at {Fixed} {Energy}}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:15}, pages = {1--5}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1996-1997}, zbl = {1055.81629}, language = {en}, url = {http://archive.numdam.org/item/SEDP_1996-1997____A15_0/} }
TY - JOUR AU - Ralston, James TI - The Role of Green’s Functions in Inverse Scattering at Fixed Energy JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:15 PY - 1996-1997 SP - 1 EP - 5 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_1996-1997____A15_0/ LA - en ID - SEDP_1996-1997____A15_0 ER -
%0 Journal Article %A Ralston, James %T The Role of Green’s Functions in Inverse Scattering at Fixed Energy %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:15 %D 1996-1997 %P 1-5 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_1996-1997____A15_0/ %G en %F SEDP_1996-1997____A15_0
Ralston, James. The Role of Green’s Functions in Inverse Scattering at Fixed Energy. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1996-1997), Exposé no. 15, 5 p. http://archive.numdam.org/item/SEDP_1996-1997____A15_0/
[A] Agmon,S. “Spectral properties of Schrödinger operators”, Annali di Pisa, Serie IV, 2, 151-218(1975) | Numdam | Zbl
[ER] Eskin, G., Ralston, J. “Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy”,Commun. Math. Phys. 173, 199-224(1995) | Zbl
[F] Faddeev, L.D. “The inverse problem of quantum scattering II”, J. Sov. Math. 5, 334-396(1976) | Zbl
[H] Hörmander, L. “Uniqueness theorems for second order differential equations”, C.P.D.E.8, 21-64(1983) | Zbl
[I] Isozaki, H. “Multi-dimensional inverse scattering theory for Schrödinger operators”, Reviews in Math. Phys. 8, 591-622(1996) | Zbl
[NU] Nakamura, G., Uhlmann, G. “Global uniqueness for an inverse boundary value problem arising in elasticity”, Invent. Math. 118, 457-474(1994) | Zbl
[NSU] Nakamura, G., Sun, Z., Uhlmann, G. “Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field”, Math. Ann. 303,377-388(1995) | Zbl
[N] Novikov, R,G, “The inverse scattering problem at fixed energy for the three dimensional Schrödinger operator with an exponentially decreasing potential”, Commun Math, Phys. 161 569-595(1994) | Zbl
[S] Sun, Z. “An inverse boundary value problem for Schrödinger operator with vector potentials, Trans. AMS 338(2), 953-969(1993) | Zbl