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WAVE PACKETS TECHNIQUES

Nicolas Lerner*

0. Introduction

We give here a short summary of a detailed article to appear ([L6]). We are interested in proving some
energy estimates for L = Dy + iQ)(t), where ¢ is one real variable, iD; = /0t and Q(t) is a self-adjoint
operator on H = L*(R}}). We look for estimates of the following type:

(0.1) ClIDeu +iQ(t)ull p2g 3¢ 2 vl 2 r,70)

for u € C§°(R,H) and a controlled constant C. The estimate (0.1) yields solvability properties for the
adjoint operator L* . When Q(t) = ¢(t,z, D,) is a classical pseudo-differential operator of order one with
real-valued symbol ¢(t, z, £), condition () for 7 — iq(t, x,£) means that

(0.2) qit,z, ) >0 and s>t =  q(s,x,&) >0.

It was conjectured in the early seventies by Nirenberg and Treves that condition (0.2) is equivalent to
solvability of 2 + Q(t). It is known that this condition is necessary for solvability to hold ([H1]). On
the other hand condition (0.2) implies (0.1) for differential operators ([NT], [BF], [H1]) and also if the
total dimension is two ([L1]) or in various special cases ([L2], [H2]). One can note that in all these cases,
condition (¢)) implies “optimal” solvability, that is the estimate (0.1), yielding H*+ordert—1 solutions for
equations L*u = f with f € H®. It was proved in [L3] that (0.2) does not imply (0.1) : one should not
expect solvability in its optimal version expressed by (0.1) as a consequence of the geometric condition (0.2).
Dencker ([D1]) was able to prove that the non optimally solvable examples of [L3] were solvable in H~!
(see also [D2]). To sum-up one could say, leaving aside the important and complete results on differential

operators,

e Condition (¢) is necessary for solvability of principal type pseudo-differential operators.
e Contrarily to various claims (published from 1971 to 1983), (¢) does not imply optimal solvability.
e The sufficiency of (¢) for solvability is an open problem.

Anyhow, our goal here is to prove (0.1) and it is therefore natural to assume a strengthened version of
(0.2). In this situation, the ordinary differential equation Dy + iq(¢, x, §) with parameters (z, £) is the “wave
packet” version of the pseudo-differential equation Dy +iq(t,x, D, ) (see [CF], [Un]). In particular, it is easy
to see that the good multiplier for the ODE is the sign s(t, z,§) of q(¢, x,&). If properly defined, using (0.2),
this sign function is non-decreasing with ¢: we can then study energy identities coming from the expression

(0.3) 2Re(Dy®(t,x, &) +iq(t,x, &)@, s(t, x, f)@}Lz(Rt).
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Our first idea will be to quantify the previous energy identity in such a way that the operator with the very
irregular symbol s(t, z, £) is still L?(IR}}) bounded. Of course, neither the ordinary nor the Weyl quantization
will do such a job, and we resort to the “Wick” quantization, which amounts to take a Gaussian regularization
prior to a Weyl quantization ; this method relies on a decomposition of our operator into an integral of rank-
one projections, whose range are the so-called coherent states (see [Be], [La], [L4]). We shall denote by s"ick
the Wick quantization of s. This quantization is non-negative, that is associates to a non-negative symbol a
non-negative operator (this fails to be true for the Weyl or the ordinary quantization). Moreover this Wick
quantization, whose precise definition is given in section 4 below, is close enough to the ordinary quantization
to be useful. Namely, if ¢ is a first order symbol and ¢* its Weyl quantization, the difference ¢* — ¢"Vick
is L? bounded. We need then to estimate from below the selfadjoint part of q(t,z,&)%s(t,z, &)V and to
check what remains of the simple equality ¢(¢,z,§)s(t,z,§) = |q(t, z, §)|.

We develop two different methods for this purpose. The first one was given recently in [L5], and
amounts to investigate closely the composition formula ¢"ViksWick and to extract the principal symbol in
the Wick quantization of this product of operators. The second one is more elaborate and uses various tools
of microlocal analysis to study the same product of operators : we construct a metric linked to the symbol
q(t,-,-) under scope and we get as close as we can of the non singular set of ¢, namely {(z,¢),q(¢,z,&) =
0, and dgeq(t,x,&) # 0}. All the difficulties are somehow concentrated near this set, and we use then
the Fefferman-Phong inequality ([FP], [H1]) for general second order pseudo-differential operators to get
semi-boundedeness for Re ¢"VicksWick  Anyhow, both methods are useful for us and we are able to prove the
following

Theorem 0.1. Let n be an integer and q(t,z,&) € C! ([—1, 1], C*° (R} x ]R?)) satisfying (0.2) for
s,t € [-1,1], (z,£) € R" x R™ and such that for all multi-indices «, 3,

(0-4) sup (9500 a)(t 2, )| (L + €)™ = 7a5(a) < +oo.
[t[<1, (z,§)ER>"

We assume also that there exists a constant Dy such that, for |{| > 1,

2 2
05 07| FEea o] +if5hee o] <Digteng,  when gta9 =0

Then, there exist positive constants p,C' depending only on n and on a finite number of v,3(q) in (0.4) such
that the estimate (0.1) is satisfied for u(t,z) € C§°((—p,p), S(R})) and H = L*(R").

In our remark 1.1 of [L2], we stated that the existence of a Lipschitz continuous function, homogeneous
of degree 0, (x, &), so that

(0.6) (t—0(x,8)) q(t,z,£) =0

would imply solvability of the operator D; —iq(t, z, D,), for ¢ satisfying (0.4), homogeneous of degree 1 with
respect to £. It is proven in section 4 of [L5] that (0.6) implies (0.5).

Acknowledgments. I wish to thank L.Hormander for useful discussions on various topics related to this
article.

1. Gaussian mollifiers for characteristic functions

We set for £ € R,

2 E 2
(1.1) go(g):/ sign(n)2!/2e2mlEl dU:/ 93/2,—2mt> gy
R 0
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Note that o, is odd, o¢(+00) = 1 and its derivative o is in S(IR) and positive. We consider now a smooth
real-valued function b(x, \) defined on R? x [1,0) , in the symbol class S(A'/2,|dx|*A~"). It means that b
satisfies the estimates

(1.2) sup  [9Eb(x, \)[ATEFE = 44(b) < o0,
x€R4A>1

for any integer k. We omit below the dependence of b on the parameter A and refer to
(1.3) k()  as the semi — norms of b.
We set-up then, for (x,€) €e R xR, 3 € R,
(1,4) J(ng) = // Sign(’]” + b(y)) 2%efzﬂ(‘x*y|2+‘£7'ﬂ‘2)dydfr’7
R? x R
(1.5) o(B,x) = / 00 (B+b(x +y) = b(x))T(y)dy, D(y) =2 ",

We have thus

(1.6) J(x,6) = o (& +b(x),x).
Moreover,
(1.7) b(x +y) = b(x) = b'(x) -y +wo(x,y)y"A7"/?,

where the bilinear form wy(x,y) = fol(l — )" (x + Oy)\'/2d satisfies the estimates

k41

(1.8) 0505w (%, ¥)] <A™ 2 Yequpa(D),

following from (1.2). We have from Taylor’s formula and (1.5), (1.7),

o(B,x) = / oo (V' (%) -y + wo(x, y)y? AT (y)dy + B / / o4(68 + b(x + y) — b(x))T(y)dyd,

which implies, since o is odd,

o(B,x)= A71/? //0 oo (V' (x) -y + 9w0(x,y)y2)\_1/2)w0(x,y)y2F(y)dyd0
(1.9)

+46 //0 o4 (08 +b(x +y) — b(x))T(y)dyds.

On the other hand, from (1.5), (1.7), we get

(1.10) o(B,x) = ao(ﬁ)+//0 oh (5+9[b'(x).y+w0(x,y)y2)ﬁ1/2]> [bl(x).y—}-wo(x,y)yZ)\*l/Z]F(y)dydﬂ.

We state the following lemmas and refer the reader to [L6] for the proofs.
Lemma 1.1. Let b be a symbol satisfying (1.2). Then, if o is defined by (1.5), we have

(1.11) o(8,%) = B (B.x) + A~ 2r0(x) = 00(8) + 72(8,%),
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where ro € S(1, |dx|°A~!) with semi-norms depending only on the v, in (1.2). Moreover o1(8,x) > 0 and
for all k,

(1.12) sup |(D%01)(8,%)|A/? < o0, sup 18] [(9k02) (B, %)|AF/? < o,
BER,xcR4 A>1 BER,xeR4 A>1

depending only on the v, in (1.2). Moreover, there exists a positive constant c¢, depending only on

d,v1(b),v2(b), such that, for all positive C,

1.13 inf LX) > cpe™ 4™,
(1.13) |81<C xR 71(8,%) 2 co

Lemma 1.2. Let b be a symbol satisfying (1.2) and j be defined by (1.4). Then, there exist positive
constants ci, ca, c3, depending only on d, v, (b),v2(b), such that for all (£,x,)) € R x R% x[1, +00),

(1.14) A2 (€4 b(x))j(x,€) + ez > 0.

Moreover, if |€ + b(x)| > ¢, we have

(1.15) ey 'AVEIE 4 b(x)] S AV (€4 b(x)) (%, €) < AVEIE+ b(x)).
IFlE+b(x)| < 1

(1.16) A2 (€ 4+ b(%)) (%, ) + 3 > A2 (€ + b(x)) 2cpe 47
where ¢y is defined in lemma 1.1.

2. An admissible non-conformal metric

Let n be an integer and R*" = R} x ]R? be the standard phase space with its symplectic form

¢= Y d& Ndaj.
1<j<n
We equip the phase space with a positive definite quadratic form I'g such that 'y = Iy : it means that
there is a symplectic basis of R*" in which the matrix of Ty is the identity (see (18.5.7) in [H1] for a general
definition of T§j). We consider now a smooth real-valued function ¢(X,A) defined on R*" x [1,00), in the
symbol class S(A,A71Ty). It means that ¢ satisfies the estimates
14k
(2.1) sup |8§q(X,A)|F0A 2 = 44(q) < o0,
XeR2™,A>1
for any integer k (the norm of the multi-linear form 9% ¢ is evaluated with respect to I'p). As in the previous
section, we omit below the dependence of ¢ upon A as well as the index I'y for the norms of multi-linear
forms. We define an admissible metric g on R®" as a mapping X — gx from R®" to the set of positive
definite quadratic forms such that g is slowly varying, temperate and such that, for each X € R*", gx < 9% -
The proper class of the symbol ¢ is defined by the following metric, conformal to [,

(2.2) Gx = MX)™'To, MX) =1+ (X))}, + la(X)]-
It is known that G is admissible with constants depending only on ~,, k£ = 0,1,2 in (2.1), ([H1], section
26.10) and that ¢ € S(\,G) with the same semi-norms as ¢ in S(A,A7'Ty). We define a new metric by

|dg(X) - T? [o(T)

23) =M =X P T3 P ] 0 T ERT
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The following four lemmas are proved in [L6].
Lemma 2.1. Let ¢ be a symbol satistying (2.1). If G is defined by (2.2) and g by (2.3), we have for
A>1,

(24) ’}/01 (q)_lA_lI‘o S GX S 2gX S 4F0 = 4F8 S 89; S ].GG; S 16’}/01(61)/\]_—‘0,

with 701(q) = 1+ 71(¢)* + 70(q). Moreover, g is slowly varying and temperate.

Remark 2.2. The metric G separates the phase space into specific regions, depending on the fact that the
dominant term in the expression (2.2) of A(X) is |¢(X)], |¢'(X)|? or 1. In fact, following lemma 26.10.2 in
[H1], one gets G-elliptic regions in which Clg(X)| > A(X). In such places, the metric g is equivalent to G,
i.e. the ratios gx(7')/Gx(T) are bounded above and below by fixed constants. This is also the case for the
G-negligible regions, in which A\(X) is bounded above. In fact, in both cases A\(X)/2 + |¢(X)]| is equivalent
to A(X) and since |¢'(X) - T|> < 42A(X)[o(T), we get the equivalence of g and @ there. The metric g is
not equivalent to G on G-non-degenerate regions, that is on places where |¢'(X )|2 is the dominant term in
(2.2). For instance, if ¢ were the linear form A/2¢, . the metric ¢ would be, with symplectic coordinates
(x1,6,X") € Rx R xR 2

_ 6P | ldef? +]dXTEJdX P

= =G
L+& A2 +]G) A ’

when |&;] < \1/2.
Lemma 2.3. Let g/2 be the admissible metric defined in (2.3). We define the positive numbers p by
1w(X)? =4 inf[g$(T)/gx(T)] . We have, with a constant C' depending only on the v in (2.1),

(25) 1< p(X) < N(X),
(2.6) Q)] +1>AX)/2 =  Gx <2x < 4(1 +472)Gx,
@D WOO7 202 ad il 2007 = o< M <o

28 (x)? 2 and A(X)1/2 -1 pX)* c,
(2-8) lg"(X)]” > A(X)/2 and [g(X)] > A(X) = S A - <
(2.9) lg(X)| < Cu(X)?,  |d(X) T| < Cu(X)gx (T)"2.

3. Symbol classes

Lemma 3.1. Let ¢ be a symbol satisfying (2.1). If g is defined by (2.3), p in lemma 2.3, then
q € S(u?,g) with the same semi-norms as q in (2.1).

Lemma 3.2. Let f be a bounded smooth function of one real variable so that f' belongs to the Schwartz
space S(R). Let q be a symbol satisfying (2.1) and g defined in (2.3). Take \(X) € S(\(X),Gx) so that
MX) > doA(X) for some positive constant dy (e.g A\(X) = \/1 + |q’(X)|i4~0 + |¢(X)[?). We have

(3.1) a(X) = F(MX) 2 g(X)) € 5(1,9),

with semi-norms depending only on those of ¢ in (2.1), on the L* norm of f, on semi-norms of f' in S(R)
and on dy.

4. Wick quantization



Before defining the Wick quantization, we recall the usual quantization formula,

e DoJule) = [[ ae i, i) = [ Eutw

and the Weyl formula

2) = / / eime—1)Eq( T ‘2* Y yuly)dyde.

As in section 2 and 3, we assume that the phase space R?" is equipped with a symplectic norm T. For
simplicity of notations, we shall often write |T)* instead of To(T'). The following definition contains also
some classical properties.

Definition 4.1. Let Y = (y,n) be a point in R*". The operator Sy is defined as [2”6’2”"*”2]1”
This is a rank-one orthogonal projection: Syu = (Wu)(Y)rye with (Wu)(Y) = (u,7y¢) 2(gn), where
o(z) = 2/4e=ml2l” and (Tyne)(x) = p(x —y)e*™ =5 Let a be in L>®°(R**). The Wick quantization of
a is defined as

(4.1) a"Vick — / a(Y)ZydY.
]RZn

The following two propositions are classical and proved in [L6].

Proposition 4.2. Let a be in L®(R*"). Then V' = W*a*W and 1Vick = Idp2(rn) where W is
the isometric mapping from L*(R™) to L?(IR*") given above, and a* the operator of multiplication by a in
L?(R?™). The operator myy; = WW* is the orthogonal projection on a closed proper subspace H of L?(IR*").
Moreover, we have

(4.2) ||aWiCk||L(L2(]Rn)) < ||a||Loo(]R2n)a a(X) > 0= a"'* >0,

(4.3) 1y Ezllzp2mmy) < gne= EIV-21%,

Proposition 4.3. Let p be a symbol in S(A,A7'T) (see (2.1) for the definition of a class of symbols
Wick — pw 4 r(p), with r(p) € S(1,A™'Ty) so that the mapping p + r(p)
is continuous. Moreover, r(p) = 0 if p is a linear form or a constant.

Proposition 4.4. Let a € L®°(R?*"),b € S(A, A~'T), be real-valued functions. Then

with a large parameter A). Then p

) ) 1 Wick
(4.4) Re (oVickpWick) = [ab - dM) VW) s,
yI3

where [|S] (1 2(rn)) < dnllallpev2(b). Here v2(b) is a semi-norm of b in S(A, A1), and d,, depends only
on the dimension.
Proof. We have
aWVick pWVick = / / a(Y) b(Z) SySz dYdZ
1
// b )HVY)-(Z-Y) + / (1-9) b”(Y+0(Z—Y))d0(Z—Y)2} SyYz dYdZ

(4.5) /( )b(Y zde+// (Z-Y) SySy dYdZ + R,

with
= //a(Y, Z)(Z -Y)? SyXyz dYdZ,
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where the norm of the quadratic form a(Y,Z) is less than ||a||;72(b); here v5(b) is a semi-norm of the

symbol b. From (4.3) and Cotlar’s lemma, using

SyvEz3yvi Yz = EyE2)(EzEy)(Ey: Ez0),
one gets that
(4.6) ||R||L(L2(]R")) < C(n)llall pe2(b),

where C(n) depends only on the dimension. We check now the second term in (4.5), using definition 4.1,

will give O

(4.7) / VYY) (Z-Y)SzdZ =V (Y)- [/( 7-X +X —Y)2re 2 X721 47 . V(YY) LY,

where Ly is the (vector-valued) linear form X — Y. Note that, from proposition 4.3, L* = LWi°%t, From
(4.5), (4.7), we get

(4.8) Re (a"VikpWick) = (gb)Vick + / a(Y)V'(Y) - Re(L¥Ey)dY + ReR.

Now, since Ly is a real linear form, we have

1 0

w

4. LYSy) = [X—Y on —2”‘X—Y|2] = — 2 (zy).
(49) Re (LY Sy) = [(X - v)2"e =5 ()
An integration by parts, in the distribution sense, gives what we expect in proposition 4.4, except possibly
for

1
(4.10) 1 a(Y) Trace b (Y)SydY + ReR.

i

The estimate of R in (4.6), a € L™, b € S(A,A'T'y) and the estimate of ||aVi|| in (4.2) applied to the
integral in (4.10) prove the statement on S in proposition 4.4, whose proof is now complete.O

5. A non negativity result
We consider in this section a smooth real-valued function ¢(t, X, A) defined on Ry x R3 x [1,00) which

satisfies (2.1) uniformly in ¢, i.e.

(5.1) sup  |9%a(t, X, A)|p, ATFE = y(g) < oo,
teR, X €R2™ A>1 0

where Iy is a symplectic norm (see §2). Moreover, we assume that 7 — i¢ satisfies condition () (from now

on, we omit the dependence of ¢ on A),

(5.2) q(t,X)>0 and s>t = q(s,X)>0.
Let’s consider, for ¢ fixed, the function

(5.3) A(t, X) =1+ |q(t, X)| + lai, (¢, X)IE,-

We have, according to (2.2),

(5.4) q(t, X) € S(A(t, X), % =a¥).



According to in section 2, the metric G®) is slowly varying on IR%?, satisfies the uncertainty principle
(G < G°), and is temperate. All the metrics G® are conformal and have the same “median symplectic”
norm Iy, according to lemma 2.1. The metric G®) defines the proper class of the symbol ¢(t,-) : this is a
metric on the phase space R?", depending on ¢t € R. We shall refer below to G(*) as the proper metric of
the symbol ¢ at the level t. We define now the bounded measurable functions

O(X) =inf{t € (-1,41), q(t,X) >0} with 6(X)=1 if this set is empty,
(5.5)

s(t,X) =1, if t > 6(X), s(t,X) =0, if t = 6(X), s(t, X) = -1, if t < 6(X).

We get from (5.2) and (5.5) that, for t € (-1, 1),
(5.6) q(t, X)s(t, X) = q(t, X)|.

We consider J(t) the following increasing (with ¢) bounded selfadjoint operator on L?(R") :
(5.7) J(t) = (s(t, X))V
We can now state the main result of this section,

Theorem 5.1. Let ¢ be a function satisfying (5.1-2), Q(t) = q(t,X)%, Qo(t) = q(t, X)Vik and J(t)
be the operator given in (5.7). Then there exists 4,4 depending only on a finite number of 7y, in (5.1) such
that

(5-8) ReQ()J(t) +75 >0, Re Qo(t)J(t) + 70 2 0,

where 2Re A = A+ A* for a bounded operator A on L?(IR"™) . Moreover, the mapping t — J(t) from (—1,1)
to L(L?(R™)) is non-decreasing.

Proof. The first inequality in (5.8) implies the second one since J is L? bounded as well as Q — Qo from
proposition 4.3. We prove now the first inequality. The operator J(t) is non-decreasing with ¢ since the
function s(¢, X') is nondecreasing of ¢ and the Wick quantization is non-negative (second property in (4.2)).
We set

(5.9) J(t, X) :/ s(t,Y) 2m e 2 IX Y gy,
IR2n

so that J(t, X) is the Weyl symbol of J(¢). We obtain that J(t,X) € S(1,Ty) with semi-norms bounded by
constants depending only on the dimension n. Since ¢(t, X) € S(A,A'Ty), the real part of the operator
Q(t)J(t) is given, up to L? bounded terms, by (q(t, X)J(t, X))w. From now on , we suppose that the variable
t is fixed. We consider a partition of unity subordinated to the metric Gg? defined in (5.4). The following
lemma is classical for an admissible metric (see section 18.4 in [HI]).

Lemma 5.2. Lett be a number in (—1,1). There exists a sequence (X,),enN of points in the phase space
R*" and positive numbers pg, Ny, such that the following properties are satisfied (G, = A, 'To, A, = M(X,,),
will stand for Gg?y defined in (5.4)). We define U,, U}, U* as the G, balls with center X, and radius
00, 2p0,4po. There exist two families of non-negative smooth functions on R*", (x,)ven, (¥)ven such that

(5.10) ZX”(X) =1, supp x» CU,, ¥, =1onU}, supp ¢, C U}*.

Moreover, x,,¥, € S(1,G,) with semi-norms bounded independently of v (in fact depending only on the i
in (5.1)). The overlap of the balls U* is bounded, i.e.

U #0 = #N<N,.
vEN



Moreover, Gx ~ G, all over U}* (i.e. the ratios Gx(T)/G,(T) are bounded above and below by a fixed
constant, provided that X € U}*), so that ¥,q € S(\,,G,) uniformly (in fact with semi-norms depending
only on the v, in (5.1)).
We have, using the above notations,
(6 0IX) = S X0t X) [ s(eY) v,z e T ay

(5.11) B

+ ZXV(X)q(t,X)/ s(t,Y) (1 -0, (V))2" e 2r XY gy,
v R2n
We examine first the second term in (5.11)

(512) n3) = ()t X) [ sy (1= ()2 e Ry,

We obtain immediately from lemma 5.2 and (5.4)
(5.13) P (X)TH| < A |T|Fe~ ™8> C(k,n),

where C(k,n) depends on the 74 in (5.1), on the dimension n, on k, but is uniform with respect to v. Since
the support of r, C U,, and these sets have a bounded overlap , (5.13) implies that

(5.14) > (Xt X) /R L SY) (L= ()2t e 2 Ray = 37, (X) € 5(1,GY),

and thus gives rise to a L?(IR™) bounded operator. We are left with the first terms in the right-hand side
of (5.11). We focus our attention on the non-degenerate indices: for these indices v, with a constant Cs
independent of v,

Cslg’| > AL/? for any X € UZ*  and inf

X)) <O\,
L g(X)| <Cr A

Then, for X € U}, the symbol ¢ can be written as
(515) q= >‘11//2 (51 +b0(x17xlvgl)) eO(xvf)v

for a suitable choice (depending on v) of linear symplectic coordinates (§; € R, z; € R are dual variables,
¢ e R" ' a2 € R" ! are dual variables ; we note below X’ = (2/,&) e R" ' xR" * and Y' = (¢',9') €
R"'xR"*',and Y = (y1,m,Y’") € RxRxR* ?). Here, we know that bo(zy,2',¢') satisfies the
estimates of S()\ll,/Z, G,) on U}*, the symbol eq satisfies the estimates of S(1,G,) on U2* and is elliptic i.e.
eo(xz,€) > mg > 0 on Ur*. Then, there is no difficulty extending the symbols by and ey to R*® : we set
b =1,bg and e = eg1), in such a way that

(5.16) Xod = Xu A2 (& + b1, 2", €)) ez, €),

with b(xy,2',&") € S( ,1/2, G,), the symbol e € S(1,G,) and is elliptic on U}, i.e. e(x,&) > mg > 0 there and
e > 0 everywhere. Going back to the first term in the right-hand-side of (5.11) for non degenerate indices,
and noticing that s(t,Y )i, (Y) = 1, (Y) sign(n + b(y1,Y")) we check

Xv(X)g(t, X) /Rzn s(t,Y) 1, (V)2" e XY Fay =

(5.17) e(X)xn (X)N/? (& + b1, X")) / sign(m + b(y1,Y"))2" e 2mX-YP gy
]RZTL

= xv(X)q(t, X) /R sign (m + b(y1,Y") (1=, (V))2" e72"X=YF gy,

9



We get rid of the last term, which is similar to (5.12), by using the same type of estimates as in (5.13), (5.14).

It turns out eventually that the remaining terms in (5.11) are, x and y standing for (z1, X') and (y1,Y"),
(5.18) e(X)Xu(X)All,/Z (61 + b(x)) / / Sign(m + b(y))zd/Z 672ﬂ|x7y|221/2 67277\51*771\2dyd171.
R/ R

We note first that the function b is defined on R¢, d = 2n — 1, with the norm induced by Ty and satisfies
the estimates

R =
[SE

(5.19) 6™ (x)] < A A

?

where the 4 are uniform in v and depend only on the ~; in (5.1). Our first important point is that from
(1.4-5), we get

/ . / sign (i +b(y))2*/? e 12 = B dydn, = o6 +b(x), %) = j(x.60).
RY R

This implies, using (1.14) in lemma 1.2,
(5.20) AL/2 (& +b(x)) / d/ sign(m + b(y))2d/2 e 2mx=ylgl/2 6_2”‘51_"1‘2dyd171 > —ecs,
RYR

where c3 is the constant of lemma 1.2 (and thus is uniform in v and depend only on the 7 in (5.1)).
Eventually, we are left with the function

(5.21) Ap(X) = xo(X)q(t, X) o (& + b(x),x),

which is bounded from below (see (5.20)). We can prove that 4, € S(u?,g) (see [L6]). Since g is an
admissible metric, Hormander’s generalization of the Fefferman-Phong inequality (theorem 18.6.8 in [H1])
proves that A semi-bounded from below. The proof of theorem 5.1 is complete. O

6. Energy estimates
Let q(t, X, A) be a smooth function on R; x R3 x[1,00), supported in B = {|t| < 1} x {|X]| < AY/?},
satisfying (5.1). We assume that 7 — iq satisfies Nirenberg-Treves’ condition (¢) i.e. that (5.2) is satisfied.
Let xo : R — [0,1] be a smooth function, equal to 1 on [—1,1], vanishing outside (—2,2) and w = 1 — xp.
We set, with s(t, X') defined in (5.5),
To Ti

o~ g 95 dqg 9s oo~ o

o o9 0O0s CYs 7 (2 1 2
(6.1) T = 29X, 9%, ~ 90X X = Xo(la¢x )T +w(lax|)T -

Lemma 6.1. Let ¢, s and T be as above. The distribution derivative 0s/0t is a positive measure satisfying

Os
(62) <§7 W(t7X)>$I(]R2’n+1)7s(]R2n+l) = 2‘/]RZH \I/(G(X),X)dX

Moreover, we have the following inclusions,
(63) supp T C {(th) € Bvq(taX) = 0}7 supp 71 C {(th) € Bvq(taX) =0 and |qIX(t7X)| > ]-} =K.

The open set Q@ = {¢x (¢, X) # 0} N {|q(¢t, X)| < 1} is a neighborhood of the compact K and the Lebesgue
measure of Q N {q(t, X) = 0} is zero. The restriction s|, of s to () is the L> function q/|q|. We have
' 0 [ q

pa— ! 2 [ —_

] — 26(g)|d Pw(ldk ).
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Proof. The expression (6.2) is a consequence of (5.5). Moreover, from (5.5) and (5.6), the restriction of s
to the open set {¢(¢t,X) > 0} (resp.{¢(t,X) < 0}) is 1 (resp.—1). Thus the support of ds/0X; is included in
{q(t, X)) = 0}. Since the restriction of ¢ to the open set B¢ is zero, (6.3) is proved. If (¢, X) is a point of
such that ¢(¢, X)) = 0, since ¢’y (¢, X) # 0 there is a neighborhood V of this point such that £L(VN{g =0}) =0

(£ stands for the Lebesgue measure). This proves that the compact sets
{(t, X) € B, 2771 <k (t, X)| < 2} n{(t, X), q(t, X) = 0}

are of Lebesgue measure 0 for all j € Z, and so is their denumerable union 2 N {g = 0}. From (5.6), we

get that the restriction s), of s to Q is the L> function ¢/|q|. This gives (6.4). Note that since () is a

neighborhood of the support of T, (6.4) determines completely T7. The proof of lemma 6.1 is complete. O
Lemma 6.2. Let ¢ and s be as above. We define, using (4.1),

QO(t) = / Q(t,X)Ede — q(t, ,)Wick.
IRZn
Let u(t, ) be a function in C§° (]Rt,S(RZ)), and set u(t)(z) = u(t,z), and for (t,X) € R x R2"

(6.5) o(t, X) = [Wu®)|(X) = (u(t), 7x ) L2 (")

The function ® belongs to C§° (R, S(R")) and, with D; = (2im)~'0/0t, w defined above,  in lemma 6.1,
U € C§°(R,[0,1]), ¥ =1 on a neighborhood of K (see (6.3)), we have

(6.6) Re(Dyu, iJ (t)u(t)) p2pn+1y = % /]Rzn |®(6(X), X)]?dX,
(6.7 Re(Qu(0ult), T Ou(0) oy > [ latt 01800 X Patax

1 2 2 - :
—%<5(Q)|qlx| w(lgx "), T (t, X)I@( X) ) pray iy — Tllull T+,

where 71 is a constant depending only on the dimension and the semi-norms of q.
Proof. Let us first notice that from (4.1) and (6.2) the left-hand-side of (6.6) is

_i//%[@Xu(t),u(t)mmn)] s(t, X) dtdX = QL/R 1®(B(X), X)[2dX.

™

We use the expression of Qo and proposition 4.4 to write, with L>(R"™') = L?(R;, L*(R")) dot products,

Re(Qo(t)u(t), J(t)u(t)) = (Re[J(t)Qo(t)] u(t),u(t))
= <|:|Q(t7‘) — ig_;]((t’) . é(?_;( . ]chk

where [|S(t)[z(z2(rn)) < dny2(q). We get then the following inequality, using (6.1), (6.4) and (6.5), with ¥
as in lemma 6.1,

u(t), u(t)) + (S(t) u(t), u(t)),

Re(Qo(0u(t). JOu(t) = ([ jatt.X)|8(t,3)Parax

1 2 2 p
— 5@l Pl ), (X2 )P o0y
1 , 2. 0q Os 2
— —(t, X)) =—(¢t, X),|®(t, X
Ar <X0(|qX| )8X (t7 ) X (tv )7| (t7 )| >S’(]R2"+1),S(]R2"+1)

~dp72(q) Jull72(mns1)-
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To obtain (6.7), we need only to check the duality bracket with xo. This term is

i//s(t,X) aiX' [X0(|qlx|2)§—§_(t,X)|(I)(t7X)|2}dth
(05 - % //S(th) 8% : [X0(|qlx|2)§—;]((t,X)]|q>(t7X)|2dth
+%//S(t,X) X0(|qIX|2)§—§((t,X) ;;( [(Sxut), u(t)) e me)] dtdX.

We calculate

(6.9) BiX X0(|QIX| )88)(1( (t, X)] (|QX| )2 XX(quqX) +X0(|QIX|2) Tl"ql)l(x-

From (6.1) and the fact that the support of xo is bounded by 2, we get that (6.9) is bounded by a semi-norm
of g. This proves that the absolute value of the first term in the right-hand-side of (6.8) is bounded above
by the product of a semi-norm of ¢ with ||u||2L2(Rn+1). We claim that, from Cotlar’s lemma and (4.3),

(6.10) 1 o2

[ 055 (3) v < llall o e s

L(L*(R™))
where d,, depends only on the dimension : in fact, from (4.4), the Weyl symbol of Xy X is
Py, (X) = e—ﬂ-\X—Y|2e—ﬂ-\X—Z|Ze—2i7r[X—Y,X—Z}2n.
This implies that the Weyl symbol of %(Ey)aizj(zz) = aY o7; Sy Xz i
qYZ(X) :pYZ(X)Lj(Y -X,Z - X)a
where L; is a polynomial of degree 2. Now, we have
(6.11) 4y, (X)] < 16727/2\/|p,,, (X)] < 16720 FIY 21 =X =327

so that the £(L*(R")) norm of %(Zy)a%(Ez) is bounded above by the L'(IR*") norm of its symbol ¢, ,,
which is estimated by 1672" =51V =ZI" from (6.11). Cotlar’s lemma implies then (6.10). We note that

s(t, X)xo(ldx|” ) (t X)

is bounded by 2, so that (6.11) implies that the absolute value of the second term in the right-hand-side of
(6.8) is bounded above by w’lndn||u||ig(Rn+1). This concludes the proof of lemma 6.2.0

Theorem 6.3. Let q,Qo,J,u be as in lemma 6.2. We assume that there exists a constant Dgy, such
that

(6.12) g6, X)=0 and |¢x(t,X)P>1 = |¢x(t, X)|> < Dogi(t, X).

Then, there exist €9, Ty positive constants depending only on the semi-norms of ¢ and on Dy such that,
assuming supp u C {|t| < Ty} , the following estimate holds (with L?>(R"™) dot products and norms)

(6.13) Re(Dyu + iQo(t)u, i.J (£)u + %t ) >

87rT
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Thus, there exists a positive constant v, depending only on the semi-norms of ¢ and on Dy, such that, for
u € C§°(R,S(R™)) with supp u C {|t| < To},

(6.14) YNDru +iQ()ull > [Jull.

Proof. Let (t9, Xo) be a point in K (see (6.3)). From (6.12), q;(to, Xo) > 0, so that the implicit function
theorem give that, in an open neighborhood of (tg, Xo),

qt, X)=e(t,X)(t—6(X)) with e>0 and e,6€C*.
This implies that, on this neighborhood,
(6.15) 3(t — (X)) = 6(a)q;(t, X).

Eventually, (6.15) makes sense and is satisfied in an open neighborhood Q of K. Thus, setting Qo = QN Q,
where 2 is defined in lemma 6.1, we obtain, with w defined before (6.1) and ¥ € C§°(,[0,1]) , TP =11in a
neighborhood of K , ® given by (6.5),

(6.16) (6(a)gh (t, X), T (t, X)®(t, X)[*) b (00) D(20) < / |B(6(X), X)dX.

R2"

Moreover, from the assumption (6.12), we have

1 2 2
—(6(@)ldx | w (a5 "), Tt X)®E X)) pr () Do)

2w
Dy

(6.17)
DO 2 2 2
< §<5(Q)QQ7W(|QIX| ) (t, X)[@(E, X)) pre),p(020) < %/]R% |(6(X), X)|"dX.

We have the identity, for positive constants g, e; smaller than 1 to be precised later,

Re(Dyu -+ iQo(t)u, i (t)u + i) =
0
3= [ 1BOC0 0P + {4 (120 Re(Quthu, T(0)u) +21Re(o(t) s J (1) + Re(Qoft, ).

Using theorem 5.1 to estimate from below the third term in the right-hand-side above (with factor (1 —e&1)),

we get
. ) ot
Re(Diu + iQo(t)u, i J (t)u + i u) >
0
1 € - > got
o [ 18600, X)X + [ 3001 — )] JulP + 1 Re{Qo(t)u, (1)) + Re(Qo(thu, u).
T JR2n 4:’/TTO To

We use now (6.7) to estimate from below the third term in the right-hand-side of the inequality above and

we obtain,

t
Re(Dyu + iQo(t)u, iJ (t)u + fTiw >
0

2 €o
[B(6(X), X)X + | o

1
2T R2"

got 1 ; .
+ / / (e1latt, )1+ 2-at, X)) [0(8, X)PdtdX —e1 5 (6(a)lax P (lax ), Wt X)I@( X)) o), p(0-
R; x R2" To 2

— Fo(1 — e1) — e | [Jul?
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We use (6.17) to estimate from below the last term above to get

Re(Dytt + iQo(t)u, i.J (t)u + i%“tm >
0
€o

4T TO

golt
s - e xoee x)paax.
]Ri XIR%;L 0

1 2
3-(1=eDo) [ | 18(600), X)PdX +

— —Fo(1 =) = T | full

We choose e; < min(1,1/Dgp) and we obtain, using that u vanishes on |t| > Ty and so does ® (see (6.5)),

Re(Dyu + iQo(t)u, i J (t)u + z'%otm > 450 — %o — %] Jul® + // (1 — €0)lq(t, X)[|®(t, X)[* dtdX.
0 Ty R, x R2"
Eventually, one can take
o= = %min(l, 1/Dy), Ty = min(1, %if% SLW
to obtain
Re(Dyu +iQo(t)u, (0 + 15 0) > ool

which implies (6.13). Since J is bounded with norm less than 1, we get (6.14) with v = (1 + £¢)87Tp/<o.
This completes the proof of Theorem 6.3 and thus of Theorem 0.1.
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