Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.
Séminaire Équations aux dérivées partielles (Polytechnique), (1997-1998), Talk no. 1, 9 p.

The operator -Δ+q with the Dirichlet boundary condition is considered in a parallelepiped. The problem of restoring q(x) from positions of nodal surfaces is solved.

@article{SEDP_1997-1998____A1_0,
     author = {Karpeshina, Yu E. and McLaughlin, J. R.},
     title = {Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1997-1998},
     note = {talk:1},
     mrnumber = {1660514},
     zbl = {1061.35527},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1997-1998____A1_0}
}
Karpeshina, Yu E.; McLaughlin, J. R. Two Methods of Solution of the Three-Dimensional Inverse Nodal Problem.. Séminaire Équations aux dérivées partielles (Polytechnique),  (1997-1998), Talk no. 1, 9 p. http://www.numdam.org/item/SEDP_1997-1998____A1_0/

[HM] O.H. Hald, J.R. McLaughlin Inverse Nodal problems: Finding the Potential from Nodal lines. Memoirs of the AMS, 119, # 572, 1997, 148 pp. | MR 1370425 | Zbl 0859.35136

[K] Yu. E. Karpeshina Perturbation theory for the Schrödinger operator with a periodic potential, in series “Lecture Notes in Mathematics", # 1663, Springer-Verlag, 1997, 352 pp. | Zbl 0883.35002