Effets dispersifs dans les équations de Schrödinger et de Vlasov
Séminaire Équations aux dérivées partielles (Polytechnique), (1997-1998), Talk no. 24, 14 p.
@article{SEDP_1997-1998____A24_0,
     author = {Castella, Fran\c cois},
     title = {Effets dispersifs dans les \'equations de Schr\"odinger et de Vlasov},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1997-1998},
     note = {talk:24},
     mrnumber = {1660537},
     zbl = {1061.35517},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1997-1998____A24_0}
}
Castella, François. Effets dispersifs dans les équations de Schrödinger et de Vlasov. Séminaire Équations aux dérivées partielles (Polytechnique),  (1997-1998), Talk no. 24, 14 p. http://www.numdam.org/item/SEDP_1997-1998____A24_0/

[Ar] A.Arnold, Self-consistent relaxation-time models in quantum mechanics, Comm. PDE, Vol. 21, 473-506 (1996). | MR 1387456 | Zbl 0849.35113

[BD] C. Bardos, P. Degond, Global existence for the Vlasov-Poisson Equation in 3 space variables with small initial data, Ann. Inst. H. Poincaré, Anal. Non Lineaire 2, 101–118 (1985). | Numdam | MR 794002 | Zbl 0593.35076

[Bo1] F. Bouchut, Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions, J. Funct. Anal., Vol. 111, 239-258 (1993). | MR 1200643 | Zbl 0777.35059

[Bo2] F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-FokkerPlanck System, J. Diff. Eq.,122, 225-238 (1995). | MR 1355890 | Zbl 0840.35053

[BM] F. Brezzi, P.A. Markowich, The three-dimensional Wigner-Poisson problem : existence, uniqueness and approximation, Math. Meth. Appl. Sci., 14, p. 35-62 (1991). | MR 1087449 | Zbl 0739.35080

[Ca1] F. Castella, L 2 solutions to the Schrodinger-Poisson system, Math. Meth. Mod. Appl. Sci., Vol. 7, N. 8, p. 1051-1083 (1997). 11 | MR 1487521 | Zbl 0892.35141

[CPe] F. Castella, B. Perthame, Estimations de Strichartz pour les equations de transport cinetique, C. R. Acad. Sci. Paris, t. 322, Ser. I, p. 535-540 (1996). | MR 1383431 | Zbl 0848.35095

[Ca2] F. Castella, Propagation of space moments in the Vlasov-Poisson equation, a paraître dans Ann. IHP. Anal. Nonlin. (1998). | Numdam | Zbl 1011.35034

[Ca3] F. Castella, Infinite kinetic energy solutions for the Vlasov-Poisson-FokkerPlanck System, a paraître dans Indiana Univ. Math. J. (1998). | MR 1665725

[Cz] T. Cazenave, An introduction to nonlinear Schrödinger Equations, Second Edition, Textos de Metodos Matematicas 26, Universidade Federal do Rio de Janeiro (1993).

[CS] J.A. Carillo, J. Soler, On the Vlasov-Poisson-Fokker-Planck equation with measures in Morrey spaces as initial data, | Zbl 0876.35085

[Co] Th. Colin, Smoothing effects for dispersive equations via a generalized Wigner transform, SIAM J. Math. Anal., Vol. 25, No 6, p. 1622-1641 (1994). | MR 1302166 | Zbl 0809.35089

[DPL1] R.J. Di Perna, P.L. Lions, Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris, Vol. 307, 655-658 (1988). | Zbl 0682.35022

[GMMP] P. Gerard, P.A. Markowich, N.J.Mauser, F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Vol. 50, N. 4, p. 323-379 (1997). | MR 1438151 | Zbl 0881.35099

[GV] J. Ginibre, G. Velo, The global Cauchy problem for some nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré, Analyse nonlineaire 2, 309-327 (1985). | Numdam | MR 801582 | Zbl 0586.35042

[HH] E. Horst, R. Hunze, Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., Vol. 6, 262-279 (1984). | MR 751745 | Zbl 0556.35022

[HO] N. Hayashi, T. Ozawa, Smoothing Effect for Some Schrödinger Equations, J. Funct. Anal., 85, p. 307-348, (1989). | MR 1012208 | Zbl 0681.35079

[Ho1] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer Verlag, New-York-Berlin (1983). | Zbl 0521.35002

[Ho2] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., Vol. 119, 147-171 (1967). 12 | MR 222474 | Zbl 0156.10701

[LZ] R. Illner, H. Lange, P. Zweifel, Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger systems, Math. Meth. Appl. Sci., Vol.17, 349-376 (1994). | MR 1273317 | Zbl 0808.35116

[IN] R. Illner, H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., Vol. 1, 530-540 (1979). | MR 548686 | Zbl 0415.35076

[LPa] P.L. Lions, Th. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoam., Vol. 9, Num. 3, 553-618 (1993). | MR 1251718 | Zbl 0801.35117

[LPe1] P.L. Lions, B. Perthame, Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Vol. 105, 415-430 (1991). | MR 1115549 | Zbl 0741.35061

[LPe2] P.L. Lions, B. Perthame, Lemmes de moments, de moyenne et de dispersion, C. R. Acad. Sci. Paris, Vol. 314, 801-806 (1992). | MR 1166050 | Zbl 0761.35085

[MMP] P.A. Markowich, N. Mauser, F. Poupaud, A Wigner function approach to (semi) classical limits : electrons in a periodic potential, J. Math. Phys., Vol. 35, N. 3, p. 1066-1094 (1994). | MR 1262733 | Zbl 0805.35106

[Ni] F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., 4. Ser., t. 29, p. 149-183 (1996). | Numdam | MR 1373932 | Zbl 0858.35106

[Pe] B. Perthame, Time decay, Propagation of Low Moments and Dispersive Effects for Kinetic Equations, Comm. PDE, Vol. 21, 659-686 (1996). | MR 1387464 | Zbl 0852.35139

[PMi] B. Perthame, S. Mischler, Solutions of the Boltzmann equation with infinite energy, SIAM J. Math. Anal., Vol. 28, N. 5, 1015-1027 (1997). | MR 1466666 | Zbl 0889.35077

[Pf] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq., 95, 281-303 (1992). | MR 1165424 | Zbl 0810.35089

[Re] G. Rein, growth estimates for the solutions of the Vlasov-Poisson system in the plasma physics case, to appear in Math. Nachrichten. | MR 1621318 | Zbl 0937.76096

[RW] G. Rein, J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Diff. Eq., Vol. 95, 281-303 (1992). | MR 1165424 | Zbl 0810.35090

[Sc] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. PDE., Vol. 16, N. 8-9, 1313-1335 (1991). | MR 1132787 | Zbl 0746.35050

[St] R.S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, p. 705-714 (1977). 13 | MR 512086 | Zbl 0372.35001

[Ts] Y. Tsutsumi, L 2 -Solutions for Nonlinear Schrödinger Equations and Nonlinear Groups, Funk. Ekva., 30, p. 115-125 (1987). | MR 915266 | Zbl 0638.35021

[VO] H.D. Victory, B.P. O’Dwyer, On classical solutions of Vlasov-PoissonFokker-Planck systems, Indiana Univ. Math. J., Vol. 39, 105-157 (1990). | Zbl 0674.60097

[Wi] E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., Vol. 40 (1932). | Zbl 0004.38201

[Ya] K. Yajima, Existence of Solutions for Schrödinger evolution Equations, Commun. Math. Phys., 110, p. 415-426 (1987). | MR 891945 | Zbl 0638.35036

[Za] S. Zagatti, The Cauchy problem for Hartree-Fock time dependent equations, Ann. Inst. H. Poincaré, Phys. Th., Vol. 56, N. 4, 357-374 (1992). | Numdam | MR 1175475 | Zbl 0763.35089