Asymptotics with sharp remainder estimates are recovered for number
@article{SEDP_1998-1999____A10_0, author = {Ivrii, Victor}, title = {Eigenvalue asymptotics for {Neumann} {Laplacian} in domains with ultra-thin cusps}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:10}, pages = {1--6}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1998-1999}, zbl = {1061.35504}, mrnumber = {1721328}, language = {fr}, url = {https://www.numdam.org/item/SEDP_1998-1999____A10_0/} }
TY - JOUR AU - Ivrii, Victor TI - Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:10 PY - 1998-1999 SP - 1 EP - 6 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://www.numdam.org/item/SEDP_1998-1999____A10_0/ LA - fr ID - SEDP_1998-1999____A10_0 ER -
%0 Journal Article %A Ivrii, Victor %T Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:10 %D 1998-1999 %P 1-6 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U https://www.numdam.org/item/SEDP_1998-1999____A10_0/ %G fr %F SEDP_1998-1999____A10_0
Ivrii, Victor. Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 10, 6 p. https://www.numdam.org/item/SEDP_1998-1999____A10_0/
[Bir1] M. Sh. Birman. The Maxwell operator in domains with edges. J. Sov. Math., 37 (1987), 793–797. | Zbl
[Bir2] M. Sh. Birman. The Maxwell operator for a resonator with inward edges. Vestn. Leningr. Univ., Math., 19, no. 3 (1986), 1–8. | MR | Zbl
[BS1] M.Sh.Birman, M.Z.Solomyak. The Maxwell operator in domains with a nonsmooth boundary. Sib. Math. J., 28 (1987), 12–24. | MR | Zbl
[BS2] M.Sh.Birman, M.Z.Solomyak. Weyl asymptotics of the spectrum of the Maxwell operator for domains with a Lipschitz boundary. Vestn. Leningr. Univ., Math., 20, no. 3 (1987), 15–21. | MR | Zbl
[BS3] M.Sh.Birman, M.Z.Solomyak.
[BS4] M.Sh.Birman, M.Z.Solomyak. The self-adjoint Maxwell operator in arbitrary domains. Leningr. Math. J., 1, no. 1 (1990), 99–115. | MR | Zbl
[DS] E.B.Davies and B.Simon. Spectral properties of Neumann Laplacian of horns. Geom. and Func. Anal., 2, (1992), pp. 105–117. | MR | Zbl
[Ivr1] V.Ivrii. Microlocal analysis and precise spectral asymptotics. Springer-Verlag, SMM, 1998. | MR | Zbl
[Ivr2] V.Ivrii. Accurate spectral asymptotics for Neumann Laplacian in domains with cusps. Applicable Analysis, 71, (to appear) | Zbl
[IF] V.Ivrii, S. Fedorova. Dilatations and the asymptotics of the eigenvalues of spectral problems with singularities. Funct. Anal. Appl., 20, (1986), pp. 277–281". | MR | Zbl
[JMS] V.Jakšić, S.Molčanov and B.Simon. Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps. J. Func. Anal., 106, (1992), pp. 59–79. | MR | Zbl
[Sol1] M.Solomyak. On the negative discrete spectrum of the operator
[Sol2] M.Solomyak. On the discrete spectrum of a class of problems involving the Neumann Laplacian in unbounded domains Advances in Mathematics, AMS (volume dedicated to 80-th birthday of S.G.Krein (P. Kuchment and V.Lin, Editors) - in press. | MR | Zbl