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Fonction de Correlation pour des Mesures Complexes
et Principe du Maximum

(texte en anglais)

W.M.Wang*

(d’apres J. Sjostrand and W.M. Wang)

Abstract: We study a class of holomorphic complex measures, which are close in an appropriate sense to a
complex Gaussian. We show that these measures can be reduced to a product measure of real Gaussians with
the aid of a maximum principle in the complex domain. The formulation of this problem has its origin in the
study of a certain class of random Schrodinger operators, for which we show that the expectation value of the

Green’s function decays exponentially.

1. Introduction.

We study a class of normalized complex holomorphic measures of the form e~%»(®)g2" ¢
in R?", where 1,,(x) is holomorphic in = and Re, > 0 and grows sufficiently fast at
infinity, so that the integral is well defined. It is not presumed that e~ 2"z is a
product measure. Moreover we assume that e~%»(%) is “close”, in some sense, to a complex
Gaussian in certain regions of the complex space. Assuming that f does not grow too fast
at infinity, we are interested in estimates of integrals of the form

/f(:):)e_w”(x)d%x,

which are uniform in n. So that eventually we can take the limit n — oco. Assume (for
argument’s sake) |f(z)|o = O(1), then if ¢, (z) were real, we would immediately have

/ F@)e=V@d2ng — O(1)

uniformly in n. However it is clear that in the case 1, (z) complex the same argument will
not give us a bound which is uniform in n. Since typically,

/ eV @) |32z — 0o

as n — oo, even though
/e_l/’”(g”)dznx =1,

for all n.
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In the following, we show that under appropriate conditions (convexity, domain of
analyticity etc.), this class of measures can be reduced, uniformly with respect to the
dimension of the space, to a product of real Gaussians. Hence the usual estimates of
integrals with respect to positive measures become applicable.

The initial inspiration for this paper comes from random Schrodinger operators, where
the expectation values of certain spectral quantities can be naturally expressed as the
correlation functions of some normalized complex measures in even dimensions. Other
examples of complex measures arise, for example, from considerations of analyticity of
certain quantities in statistical mechanics. However for concreteness, we only state our
results in the random Schrodinger case, although it is our belief that the method presented
here should prove to be of a general nature, with possible applications to other fields.

We now describe the discrete random Schrodinger operator on £2(Z4):
H=tA+V, 0<t<1) (1.1)
where t is a parameter, A is the discrete Laplacian with matrix elements

Ai=1 Ji—jhi=1,
=0 otherwise (1.2)

where i, j € Z¢, | - |; is the ¢! norm; V is a multiplication operator, (Vu)(j) = v,uj,
with v; € R. We assume that the v; are independent random variables with a common
distribution density g. We use ( ) to denote the expectation with respect to (w.r.t.) the
product probability measure. Such operators occur naturally in the quantum mechanical
study of disordered systems. (See e.g. [FS,Sp].).

For small ¢, the spectrum of H is known to be almost surely pure point with expo-
nentially localized eigenfunctions. (See e.g. [AM,DK,FMSS].) This is commonly known as
Anderson localization after the physicist P. Anderson, who first realized the importance of
the phenomenon [A]. Another related quantity of interest, which provides a necessary con-
dition for the existing mechanisms for proving localization, is the density of states (d.o.s.).
Roughly speaking, d.o.s. measures the number of states per unit energy per unit volume.
More precisely, d.o.s. is the positive (non-random) Borel measure p such that

(] (1)) = [ F(E)dp(E)

for all f € Cp(R). It is known generally that if g is smooth, then for ¢ small enough or E
large enough, p is also smooth. (See e.g. [CFS,BCKP].) In the continuum, one can prove
similar results [W2], and moreover obtain an asymptotic expansion for p [W1].

Let A be a finite subset in Z?. Let A, be the corresponding discrete Laplacian defined
as in (1.2) for 4,7 in A. Define

Hy =tAA+V, (13)
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on (?(A). For E real, (assume E € o(H,) a.s.), let
GA(E +in) = (Hy — B —in) ™}, (1.4)

be the so called Green’s function. We denote by Ga(i, j; E + in) the matrix elements of
GA(E +in). Then we have the following representation

E)= lim lim Im(GA(0,0;E + i s.
p(E) A, lim, m(GA(0,0; E +in))  a.s

In this paper we study (G (u,v; E+in)) for ¢ sufficiently small or E sufficiently large.
Our aim is to obtain estimates which are uniform in 7, A, so that we can pass to the limit:

G(p,v; E+140)) := lim lim Im(G . E +1in)).
(G(p,v; E +10)) A, lim, m(Ga(u, v; E +in))

The existence of the limiting function can be obtained directly [SW] and we will not enter
into the details here. Although the present method can give that too.

Assuming ¢ is sufficiently smooth, using the supersymmetric representation of the
inverse of a matrix, which was first used in this context in [BCKP], we can express
(Ga(p,v; E +10)) as a correlation function of a normalized complex measure. (For more
details, see [SW1].) Let

3(r) = [ e gy

denote the Fourier transform of g. Assume for example that §(7) = e~ *(7) £ 0 for r € R,
then (after taking the limit 7 ™\, 0)

i Ty — LT —i Tods d?x:
<GA(u,u;E+z'0)):z'/x“-xl,[det(iMA)e Qs g mn 2 By =i 3 by M=

JEA
(1.5)

where z; € R?, z; - zy, is the usual scalar product in R? and
My =tAp — E — idiag (k' (zj - z;)), (1.6)

where diag (k'(z; - z;)) denotes the diagonal matrix whose jj:th entry is &'(z; - z;). We
notice the appearance of the Fourier transform of the original probability measure in
the above induced measure. We believe that this is the main accomplishment of the
supersymmetric representation here. After an integration by parts, (see [SW1]) we have
further:

(Ga(p,v; E410)) = /Mgl(u, v; E)[det(iMA)e_i(ij'“_Z Emi'xj_izk(xj'xi))] H d*z;.
JeA
(1.7)
Note that if the measure in the square brackets in (1.5), (1.7) were positive, then we would
have immediately obtained that

(Galp, vs E))| < My (p, v E) |
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where the sup-norm is w.r.t. . Hence the main idea is to make a change of contours in
(C%)A, so that on the new contour the measure becomes real positive. In order to do that
we assume that g is such that g is holomorphic in a region of C which includes the convex
cone bounded by R* and e ®)R*, where 0(E) = arg(l +iE) C] — %, Z[. Moreover we
need to assume that g is € (0 < e << 1) “close” to

1
90 - 7_‘_(1 + 'U2),
so that there exists an open neighborhood Q(E) C C of ¢*¥)[0, co[ which is conic at
infinity and in which g is e-close to go. (See [SW1] for more details.) For the precise
conditions on g, see (2.1)-(2.3). Note that assuming ¢, € small, then the final contour
where the phase becomes real should be “close” to ((ew(zE) R)%)A. (Recall that z; € R2.)
Therefore before we embark on the real work, we first rotate the contour from (R2)% to

((ewg—E)R)2)A. Using the assumptions on g, the measure then takes the simple form in
(1.5), (1.7). Define

¢::i( Z txj-xk—ZE:):j-:):j—iZk(:):j-xj)).

lj—kl1=1

The change of contours is accomplished in two steps. We first look for a vector field v,
(holomorphic both in z and ¢) in (C2)* such that

Ot(e™?) + V(e ?) - v, =0, (1.8)

or equivalently

where
(% v¢ = Z(Uj,lamj,1¢ + /Uj,28:rj,2 ¢)

J

Using the flow of the vector field to change variables, we get rid of the “interaction” term
Y tx; - x. The main difficulty here (as opposed to the case ¢ real) is to find v; such
that the corresponding flow stays in the appropriate region in (C2)* for ¢ small enough so
that the resulting integral is well defined and that the measure has no zeros there. This is
achieved by using a cutoff function and solving (1.9) in some appropriate weighted space.

Unfortunately, after this operation, the coupling between x; and z;, (j # k) still per-
sists in the Jacobian of the above “change of variables”. Writing the measure as e [ d*z;
(with L holomorphic as the measure has no zeros there), we look for a second vector field
v¢ (holomorphic in z and ¢) such that

Or(e ™) + V(e ™) - vy + e Ldivy, = 0.

or equivalently
atL + VmL Uy — div Vi = 0. (110)
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We use a maximum principle in tube domains in the complex space to solve (1.10) under
the condition that Re Hess L > ¢ > 0 and some additional conditions on VL, which ensures
that the resulting flow stays in tube domains around the real axis. This is in fact why we
need to find the first vector field v; to ensure that the new phase L is such that VL has
the required properties.

Under these two changes of contours, the final measure takes the simple form

_ Zj2j d2Zj
SR | =
J
We then obtain that for ¢/(|E| + 1) sufficiently small and F in the appropriate range
(depending on g), (Ga(u,v; E + in)) decays exponentially in |p — v| for all A sufficiently
large, by using weighted estimates on Mgl(u, v; E). The precise estimate is formulated in
Theorem 2.1 in sect. 2.

We should mention here that the region of analyticity in ¢ is uniform in A. The
construction above does not depend on the fact that we have a nearest neighbour Laplacian
(1.2). It works in the same way if A is replaced by any other symmetric matrix with off-
diagonal matrix elements decay sufficiently fast.

As we have seen earlier (G) can be expressed as a correlation function of a normalized
complex measure. In fact (1.5) shows clearly the link between the present problem and
problems in statistical mechanics. (1.7) is special to the present problem. Our main
constructions however do not depend on these special equalities arising from the symmetries
of the present problem.

Before the first in a series of the works of B. Helffer and J. Sjostrand [HS], where the
equation (1.10), to our knowledge, first appeared in the context of statistical mechanics,
one of the main tools to study correlation functions was cluster expansion—an algebraic
way of rearranging the perturbation (e.g. in t) series. (1.10) provides an alternative way of
treating such problems. The advantage, in our opinion, is that there is no combinatorics
involved. The mathematics involved is purely analytical and self-contained. Moreover the
convexity condition on L that one meets is the natural one.

Another general, but more probabilistic, approach to statistical mechanics is by using
semi-groups or heat equations. It seems interesting to us to understand what would be
the analogue of the construction presented here.

Although, as mentioned earlier, the inspiration for the present paper comes from
quite a different source-random Schrodinger operators, in the end, the work presented
here should be seen as a logical extension of the works of B. Helffer and J. Sjostrand
[HS,S1,S2] in statistical mechanics. (The work presented below might also be useful for
the study of Feynmann formula.) Indeed one can take the standard example of studying
the correlation function for the measure

e 2 kA li—klyr tTITH I1 k()

jen € dzx;

- E ) ) tr; T —k(mz.)
jkEA,|j—k|y=1 "7 .
fe J li—kl1 ||jeAe dej

, .%'jGR,
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assuming that £ is such that the measure is well defined. It seems clear to us that under
appropriate conditions on k, which essentially amounts to assuming k& analytic and k& # 0
on R*, k does not grow faster than linearly at infinity and some convexity conditions on
k, the analyticity of the correlation function in ¢ for small ¢ should be a direct consequence
of the constructions here.

2. Statement of the main result.

We first specify the class of densities g that we shall allow. Note that if g is the
Cauchy distribution, go(v) = %ﬁ, then k(7) = |7| for real 7 and we have corresponding
holomorphic extensions from each half axis (and we shall only use the one from the positive

half axis, which is given by k(7) = 7). We assume that g is of the form:

g(v) = (14 O(€))go(v) + re(v), (2.1)
where L1
9o(v) = Tu241

and 7. has the following properties:

(a) 7 is smooth and real on R and satisfies

| Ok,
ovk

| < Cge for all k € N, (2.2)

for some fixed constants Cy, Cf, .. .

(b) There is a compact e-independent set K C C, symmetric around R with ¢ ¢ K, such
that r. has a holomorphic extension to C\ K (also denoted by r.) with

1
———inC\ K. 2.
FuE in C\ (2.3)

re(v) = O(e)
The O(e) in (2.1) is determined by the requirement that [ g(v)dv = 1. Assuming also
that € > 0 is small enough, as we shall always do in the following, we notice that it follows
that g(v) > 0 and hence is a probability measure.
For all A > 2d, introduce the convex open bounded set

d
W(\) = {n € R 2Zcosh77j < A} (2.4)
1
Let
pa(z) = sup x-7 (2.5)
neEW (X)

be the support function of W () so that py(z) is convex, even, positively homogeneous of
degree 1. Moreover py(z) > 0 with equality precisely at 0. In other words py(x) is a norm.
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Equip the extended line R := {—oco} UR U {+co} with the natural topology (i.e.
the one induced from the topology on [—1,+1] under the map f : R — [~1,1], where
f(£o0) = %1, f(x) = z/v/1 + 22, z € R). We define a subset £ C R in the following way:

When E € R, we say that E € £ if and only if (iff) the following holds: The line Lg
through —¢ which is orthogonal to the vector E +i (the direction of the segment joining —i
to ') does not intersect K_ := {z € K;Imz < 0} and separates K_ from FE, in the sense
that if P, is the open half-plane containing £ with boundary Lg, and P_ the opposite
open half-plane, then K_ C P_.

When E € {£o00}, we say that E € £ iff the above holds with Ly = iR.

Note that a necessary condition for £ to be non-empty is that —i does not belong to
the convex hull of K_. It is also clear that £ is open and connected.

Let d|g|(u,v) be the distance on A associated to the norm p g (p — v), so that

d|E|(M, v) = P|E|(M 2

when A is a finite set and

dig(p,v)=_ inf  pig(p—-7),
neryi(w),venyt ()

in the case when A is a torus, with m : Z¢ — A denoting the natural projection.
We can now state the main theorem.

Theorem 2.1. For every £ CC &, there are constants tg > 0, e¢g > 0, such that if

0<e<e,te€l0,1], F el = <to, then for A sufficiently large we have uniformly in

| E+i
t, e, E:

(G105 B+ 0))] < 7 exp(—dipaiye (i v) + Ot D)ol v), v €A (26)

Here p denotes the standard Euclidean distance in A.
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