Fermi Golden Rule, Feshbach Method and embedded point spectrum
Séminaire Équations aux dérivées partielles (Polytechnique) (1998-1999), Talk no. 23, 11 p.

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jaks ˇić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

@article{SEDP_1998-1999____A23_0,
     author = {Derezi\'nski, Jan},
     title = {Fermi Golden Rule, Feshbach Method and embedded point spectrum},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1998-1999},
     note = {talk:23},
     mrnumber = {1721341},
     zbl = {1055.81530},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1998-1999____A23_0}
}
Dereziński, Jan. Fermi Golden Rule, Feshbach Method and embedded point spectrum. Séminaire Équations aux dérivées partielles (Polytechnique) (1998-1999), Talk no. 23, 11 p. http://www.numdam.org/item/SEDP_1998-1999____A23_0/

[AC] Aguilar, J., Combes J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians, Commun. Math. Phys. 22, 269 (1971). | MR 345551 | Zbl 0219.47011

[AH] Arai, A, Hirokawa, M.: On the existence and uniqueness of ground states of the spin-boson Hamiltonian, J. Func. Anal. 151, 455 (1997). | MR 1491549 | Zbl 0898.47048

[BFS1] Bach, V., Fröhlich, J., Sigal, I.: Quantum electrodynamics of confined non-relativistic particles, Adv. Math. 137 (1998), 299-395 | MR 1639713 | Zbl 0923.47040

[BFSS] Bach, V., Fröhlich, J., Sigal, I., Soffer, A.: Positive commutators and spectrum of non-relativistic QED, preprint.

[BC] Balslev, E., Combes, J.-M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys. 22, 280 (1971). | MR 345552 | Zbl 0219.47005

[BG] Boutet de Monvel, A., Georgescu, V.: Boundary values of the resolvent of a self-adjoint operator: Higher order estimates, in: Boutet de Monvel, A., Marchenko, V., eds, Algebraic and Geometric Methods in Mathematical Physics, 9-52, Kluwer Academic Publishers 1996. | MR 1385675 | Zbl 0917.47022

[BR] Bratteli, O., Robinson, D.: Operator algebras and Quantum Statistical Physics 2, 2nd ed. Springer, 1997 | MR 1441540

[DJ] Dereziński, J., Jaks ˇić, V.: Spectral theory of Pauli-Fierz Hamiltonians I, preprint 1999, MaPhySto

[DJP] Dereziński, J., Jaks ˇić, V., Pillet, C.-A.: In preparation.

[He] Heitler, W.: The Quantum Theory of Radiation, Oxford, Oxford University Press (1954). | Zbl 0055.21603

[Ge] Gerard, C.: On the existence of ground states for massless Pauli-Fierz Hamiltonians, preprint | MR 1777307 | Zbl 1004.81012

[HuSp2] Hübner, M., Spohn, H.: Spectral properties of the spin-boson Hamiltonian, Ann. Inst. H. Poincare 62, 289 (1995). | Numdam | MR 1335060 | Zbl 0827.47053

[JL] Jaks ˇić, V., Last: The structure of the spectrum of the Anderson type Hamiltonians, preprint 1999

[JP1] Jaks ˇić, V., Pillet, C.-A.: On a model for quantum friction II: Fermi’s golden rule and dynamics at positive temperature, Commun. Math. Phys. 176, 619 (1996). | Zbl 0852.47038

[JP2] Jaks ˇić, V., Pillet, C.-A.: On a model for quantum friction III: Ergodic properties of the spin-boson system, Commun. Math. Phys. 178, 627 (1996). | MR 1395208 | Zbl 0864.47049

[JMP] Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincare 41, 207 (1984). | Numdam | MR 769156 | Zbl 0561.47007

[GGK] Gohberg, I., Goldberg, S., Kaashoek, M. A.: Classes of Linear Operators, Vol. 2, Birkhäuser 1993. | MR 1246332 | Zbl 0789.47001

[Kato] Kato, T.: Perturbation Theory for Linear Operators, second edition, Springer-Verlag, Berlin (1976). | MR 407617 | Zbl 0148.12601

[MeMo] Mennicken, R., Motovilov, A. K.: Operator interpretation of resonances arising in spectral problems for 2×2 operator matrices, preprint. | MR 1680916

[Mo] Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78, 391 (1981). | MR 603501 | Zbl 0489.47010

[PSS] Perry, P. Sigal, I. M. Simon, B.: Spectral analysis of N-body Schrödinger operators, Ann. Math. 114, 519 (1981). | MR 634428 | Zbl 0477.35069

[RS4] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators, London, Academic Press (1978). | MR 493421 | Zbl 0401.47001

[Si] Simon, B.: Resonances in N-body quantum systems with dilation analytic potential and foundations of time-dependent perturbation theory, Ann. Math. 97, 247 (1973). | MR 353896 | Zbl 0252.47009

[Sk] Skibsted, E.: Spectral analysis of N-body systems coupled to a bosonic system, preprint.