@article{SEDP_1998-1999____A24_0, author = {Cheverry, C}, title = {Effet r\'egularisant pour une loi de conservation scalaire multidimensionnelle}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:24}, pages = {1--13}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1998-1999}, mrnumber = {1721342}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1998-1999____A24_0/} }
TY - JOUR AU - Cheverry, C TI - Effet régularisant pour une loi de conservation scalaire multidimensionnelle JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:24 PY - 1998-1999 SP - 1 EP - 13 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_1998-1999____A24_0/ LA - fr ID - SEDP_1998-1999____A24_0 ER -
%0 Journal Article %A Cheverry, C %T Effet régularisant pour une loi de conservation scalaire multidimensionnelle %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:24 %D 1998-1999 %P 1-13 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_1998-1999____A24_0/ %G fr %F SEDP_1998-1999____A24_0
Cheverry, C. Effet régularisant pour une loi de conservation scalaire multidimensionnelle. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Talk no. 24, 13 p. http://archive.numdam.org/item/SEDP_1998-1999____A24_0/
[B-C] P. Bénilan, M.G. Crandall, Regularizing effects of homogeneous evolution equations, Contributions to Analysis and Geometry, John Hopkins Univ. Press, Baltimore, MD, (1981), 23-39. | MR | Zbl
[Bo] F. Bouchut, Introduction to the mathematical theory of kinetic equations, Coll. « Series in Appl. Math. » Elsevier in Session « L’état de la recherche » de la S. M. F., Equations cinétiques, Orléans, 4-6 juin 1998.
[Br] Y. Brenier, Averaged multivalued solutions fot scalar conservation laws, Siam J. Numer. Anal., 6 (1984), 1013-1037. | MR | Zbl
[Ch] C. Cheverry, Regularizing effects for multidimensional scalar conservation laws, submitted to the Ann. Inst. Poin., option Analyse non linéaire (1999). | Numdam | MR | Zbl
[Co] E.D. Conway, The formation and decay of shocks for a conservation law in several dimensions, Arch. Rational Mech. Anal., 64 (1977), 47-57. | MR | Zbl
[D1] C. Dafermos, Regularity and large time behaviour of solutions of a conservation law without convexity, Proc. Roy. Soc. Edinburgh Sect. A, 99 (1985), 201-239. | MR | Zbl
[D-L-M] R.J. DiPerna, P. L. Lions, Y. Meyer, regularity of velocity averages, Ann. Inst. Henri Poincaré, 8 (1991), 271-287. | Numdam | MR | Zbl
[E-E] B. Engquist, W. E, Large Time Behavior and Homogenization of Solutions of Two-Dimensional Conservation Laws, Comm. Pure and Ap. Math., XLVI (1993), 1-26. | MR | Zbl
[Ger] P. Gérard, Moyennisation et régularité deux-microlocale, Ann. Sci. Ecole Norm. Sup., 23 (1990), 89-121. | Numdam | MR | Zbl
[He] S. Helgason, The Radon transform, Progress in Mathematics, 5, Birkhäuser. | MR | Zbl
[Kr] S.N. Kruzkov, First-order quasilinear equations in several independent variables, Math.USSR-Sb., 64 (1977), 47-57. | Zbl
[L1] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional conference series in applied mathematics, SIAM (1973). | MR | Zbl
[L2] P.D. Lax, The Formation and Decay of shock waves, Am. Math. Month., 3 (1972), 227-241. | MR | Zbl
[L-P] T.P. Liu et M. Pierre, Source solutions and asymptotic behavior in conservation laws, Siam J. Math. Anal., 19 (1988), 763-773.
[L-P-T] P.L. Lions, B. Perthame et E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, Bull. of the Ame. math. So., 7 (1994), 169-189. | MR | Zbl
[Mu] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 489-507. | Numdam | MR | Zbl
[Ol] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk., 26 (1963), 95-172. | MR | Zbl
[Ot] F. Otto, A regularizing effect of nonlinear transport equations, Quart. Appl. Math., 56 (1998), no 2, 355-375. | MR | Zbl
[P-T] B. Perthame et E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys., 136 (1991), 501-517. | MR | Zbl
[Sc] D.G. Schaeffer, A regularity theorem for conservation laws, Adv. in Math., 11 (1973), 368-386. | MR | Zbl
[Se] D. Serre, Systèmes de lois de conservation I, Diderot éditeur, arts et sciences. | MR
[Sm] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New-York, (1983). | MR | Zbl
[Ta] L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires, Lecture Notes in Math., 665, Springer,Berlin, (1977), 228-241. | Zbl
[Va] A. Vasseur, Contributions à l’approche cinétique des systèmes de lois de conservation hyperboliques, Thèse de doctorat de l’université Paris 6 (1999).
[Vo] A. I. Volpert, The space BV and quasilinear equations, Mat. Sb. 73, (1967). English translation : Math. USSR Sb. 2 (1967), 225-267. | MR | Zbl
[Zu] K. Zumbrun, Decay rates for nonconvex systems of conservation laws, Comm. Pure Appl. Math., Vol XLVI (1993), 353-386. | MR | Zbl