A powerfull method has been developped in [2] for the study of -stability of travelling waves in conservation laws or more generally in equations which display -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations.
@article{SEDP_1998-1999____A8_0, author = {Serre, Denis}, title = {Stabilit\'e $L^1$ d{\textquoteright}ondes progressives de lois de conservation scalaires}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:8}, pages = {1--11}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {1998-1999}, zbl = {1063.35520}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_1998-1999____A8_0/} }
TY - JOUR AU - Serre, Denis TI - Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:8 PY - 1998-1999 SP - 1 EP - 11 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_1998-1999____A8_0/ LA - fr ID - SEDP_1998-1999____A8_0 ER -
%0 Journal Article %A Serre, Denis %T Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:8 %D 1998-1999 %P 1-11 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_1998-1999____A8_0/ %G fr %F SEDP_1998-1999____A8_0
Serre, Denis. Stabilité $L^1$ d’ondes progressives de lois de conservation scalaires. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1998-1999), Exposé no. 8, 11 p. http://archive.numdam.org/item/SEDP_1998-1999____A8_0/
[1] C. Abourjaily, P. Bénilan. Symmetrization of quasi-linear parabolic problems. Preprint (1996), Besançon. | MR | Zbl
[2] H. Freistühler, D. Serre. -stability of shock waves in scalar viscous conservation laws. Comm. Pure & Appl. Math, 51 (1998), pp 291-301. | MR | Zbl
[3] H. Freistühler, D. Serre. The -stability of boundary layers for scalar viscous conservation laws. Preprint (1998). | MR | Zbl
[4] K. Ito. BV-solutions of the hyperbolic-elliptic system for a radiating gas. A paraî tre.
[5] S. Kawashima, S. Nishibata. Shock waves for a model system of a radiatin gas. SIAM J. Math. Anal., 30 (1999), pp 95-117. | MR | Zbl
[6] S. Kawashima, S. Nishibata. Weak solutions with a shock to a model system of the radiating gas. Sci. Bull. Josai Univ. (1998), Special issue no. 5, pp 119-130. | MR | Zbl
[7] C. Mascia, R. Natalini. nonlinear stability of travelling waves for a hyperbolic system with relaxation. J. Diff. Equations, 132 (1996), pp 275-292. | MR | Zbl
[8] D. Serre. -decay and the stability of shock profiles. Proceedings, Prague 1998. A paraî tre. | Zbl
[9] D. Serre. Stabilité des ondes de choc de viscosité qui peuvent être caractéristiques. Prepublication (1994).
[10] D. Serre. Systèmes de lois de conservation, I. Diderot arts & Sci. (1996). Paris. | MR