Global Strichartz estimates for variable coefficient second order hyperbolic operators
Séminaire Équations aux dérivées partielles (Polytechnique), (1999-2000), Talk no. 10, 15 p.
@article{SEDP_1999-2000____A10_0,
     author = {Tataru, Daniel},
     title = {Global Strichartz estimates for variable coefficient second order hyperbolic operators},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     note = {talk:10},
     mrnumber = {1813173},
     zbl = {1059.35022},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1999-2000____A10_0}
}
Tataru, Daniel. Global Strichartz estimates for variable coefficient second order hyperbolic operators. Séminaire Équations aux dérivées partielles (Polytechnique),  (1999-2000), Talk no. 10, 15 p. http://www.numdam.org/item/SEDP_1999-2000____A10_0/

[1] Philip Brenner. On L p -L p estimates for the wave-equation. Math. Z., 145(3):251–254, 1975. | MR 387819 | Zbl 0321.35052

[2] Jean-Marc Delort. F.B.I. transformation. Springer-Verlag, Berlin, 1992. Second microlocalization and semilinear caustics. | MR 1186645 | Zbl 0760.35004

[3] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation. J. Funct. Anal., 133(1):50–68, 1995. | MR 1351643 | Zbl 0849.35064

[4] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998. | MR 1646048 | Zbl 0922.35028

[5] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. | MR 1168960 | Zbl 0776.58037

[6] Hart F. Smith. A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier (Grenoble), 48(3):797–835, 1998. | Numdam | MR 1644105 | Zbl 0974.35068

[7] Hart F. Smith and Christopher D. Sogge. On Strichartz and eigenfunction estimates for low regularity metrics. Math. Res. Lett., 1(6):729–737, 1994. | MR 1306017 | Zbl 0832.35018

[8] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977. | MR 512086 | Zbl 0372.35001

[9] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients iii. preprint, +/http://www.math.nwu/ tataru/nlw+. | Zbl 0990.35027

[10] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients ii. preprint, +/http://www.math.nwu/ tataru/nlw+. | MR 1833146 | Zbl 0988.35037

[11] Daniel Tataru. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math., 122(2):349–376, 2000. | MR 1749052 | Zbl 0959.35125