Resonance expansions in wave propagation
Séminaire Équations aux dérivées partielles (Polytechnique), (1999-2000), Talk no. 21, 9 p.
@article{SEDP_1999-2000____A21_0,
     author = {Zworski, Maciej},
     title = {Resonance expansions in wave propagation},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     note = {talk:21},
     mrnumber = {1813184},
     zbl = {1069.35502},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1999-2000____A21_0}
}
Zworski, Maciej. Resonance expansions in wave propagation. Séminaire Équations aux dérivées partielles (Polytechnique),  (1999-2000), Talk no. 21, 9 p. http://www.numdam.org/item/SEDP_1999-2000____A21_0/

[1] Bardos, C., Guillot, J.-C., and Ralston, J., La relation de Poisson pour l’équation des ondes dans un ouvert non borné, Comm. P.D.E. 7(1982), 905-958. | Zbl 0496.35067

[2] Burq, N., and Zworski, M., Resonance expansions in semi-classical propagation, preprint, 2000. | MR 1860756 | Zbl 1042.81582

[3] Christiansen, T. and Zworski, M., Resonance wave expansions: two hyperbolic examples, preprint, 1999, to appear in Comm. Math. Phys. | MR 1772249 | Zbl 0955.58024

[4] Dimassi, M. and Sjöstrand, J., Spectral asymptotics in the semi-classical limit, LMS Lecture Series, Cambridge University Press, 1999. | MR 1735654 | Zbl 0926.35002

[5] Gérard, C., Martinez, A., and Robert, D., Breit-Wigner formulas for the scattering poles and total scattering cross section in the semi-classical limit, Comm. Math. Phys. 121(1989), 323-336. | MR 985402 | Zbl 0704.35114

[6] L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces. Ann. Math. 145 (1997), 597-660. | MR 1454705 | Zbl 0898.58054

[7] Lax, P. and Phillips, R., Scattering Theory, Academic Press, 1969, 2nd edition 1989. | MR 1037774 | Zbl 0186.16301

[8] Majda, G., Strauss, W., and Wei, M. Numerical computation of the scattering frequencies for acoustic wave equations. J. Comp. Physics 75 (1988), 345-358. | Zbl 0643.65080

[9] Mandelshtam, V.A., and Taylor, H.S., Harmonic inversion of time signals and its applications, J. Chem. Phys. 107(1997), 6756-6769.

[10] Melrose, R. B. Singularities and energy decay in acoustical scattering. Duke Math. J. 46 (1979), no. 1, 43-59. | MR 523601 | Zbl 0415.35050

[11] Melrose, R. B. Polynomial bound on the number of scattering poles. J. Funct. Anal. 53 (1983), no. 3, 287–303. | MR 724031 | Zbl 0535.35067

[12] Merkli, M., Sigal, I. M. A time-dependent theory of quantum resonances. Comm. Math. Phys. 201 (1999), 549–576. | MR 1685889 | Zbl 0934.47007

[13] Miller, W.H., Tunneling and state specificity in unimolecular reactions, Chem. Rev. 87(1987), 19-27.

[14] Morawetz, C.S. Decay of solutions of the exterior problems for the wave equation. Comm. Pure Appl. Math. 14 (1961), 561-568. | MR 132908 | Zbl 0101.07701

[15] Peskin, U., Reisler, H., and Miller, W. H. On the relation between unimolegular reaction rates and overlapping resonances. J. Chem. Phys. 101 (1994), no. 11, 9672-9680.

[16] Petkov, V., and Zworski, M., Breit-Wigner approximation and the distribution of resonancs, Comm. Math. Phys. 204(1999), 329-351. | MR 1704278 | Zbl 0936.47004

[17] Petkov, V., and Zworski, M., Correction to [16], preprint, April 2000.

[18] Prony, R., J. l’Ecole Polytechnique (Paris), 1, cahier 2, 24 (1795).

[19] Sjöstrand, J., A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. | MR 1451399 | Zbl 0877.35090

[20] Sjöstrand, J., Resonances for bottles and trace formulae, preprint, 1998, to appear in Math. Nachrichten. | MR 1806367 | Zbl 0979.35109

[21] Sjöstrand, J., and Zworski, M., Complex scaling and the distribution of scattering poles, Journal of A.M.S., 4(4)(1991), 729-769 | MR 1115789 | Zbl 0752.35046

[22] Sjöstrand, J., and Zworski, M. Lower bounds on the number of scattering poles. II. J. Func. Anal. 123(1994), no. 2, 336-367. | MR 1283032 | Zbl 0823.35137

[23] Soffer, A. and Weinstein, M. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136 (1999), 9–74. | MR 1681113 | Zbl 0910.35107

[24] Stefanov, P., Resonance expansions and Rayleigh waves, preprint, 2000. | MR 1825264 | Zbl 0987.35097

[25] Stefanov, P., Quasimodes and Resonances: sharp lower bounds. Duke Math. J. 99, (1999), no. 1. 75-92. | MR 1700740 | Zbl 0952.47013

[26] Stefanov, P., and Vodev, G. Neumann Resonances in Linear Elasticity for an Arbitrary Body. Comm. Math. Phys. 176 (1996), no. 3, 645-659. | MR 1376435 | Zbl 0851.35032

[27] Vainberg, B. R. Exterior elliptic problems that depend polynomially on the spectral parameter, and the asymptotic behavior for large values of the time of the solutions of nonstationary problems. (Russian) Mat. Sb. (N.S.) 92(134) (1973), 224–241. | MR 346319 | Zbl 0294.35031

[28] Tang, S.H. and Zworski, M. From quasimodes to resonances, Math. Res. Lett., 5(1998), 261-272 | MR 1637824 | Zbl 0913.35101

[29] Tang, S.H. and Zworski, M. Resonance expansions of scattered waves, preprint 1999, to appear in Comm. Pure Appl. Math. | MR 1768812 | Zbl 1032.35148

[30] Zworski, M., Poisson formulæ for resonances, Séminaire E.D.P. 1996-1997, École Polytechnique, XIII-1-XIII-12. | Numdam | MR 1482819 | Zbl 02124115

[31] Zworski, M., Poisson formulæ for resonances in even dimensions. Asian J. Math. 2 (1998), no. 3, 615-624. | MR 1724627 | Zbl 0932.47004

[32] Zworski, M., Resonances in physics and geometry. Notices Amer. Math. Soc. 46 (1999), 319–328. | MR 1668841 | Zbl 1177.58021