Vorticité dans les équations de Ginzburg-Landau de la supraconductivité
Séminaire Équations aux dérivées partielles (Polytechnique) (1999-2000), Talk no. 6, 14 p.
@article{SEDP_1999-2000____A6_0,
     author = {Serfaty, Sylvia},
     title = {Vorticit\'e dans les \'equations de Ginzburg-Landau de la supraconductivit\'e},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1999-2000},
     note = {talk:6},
     mrnumber = {1813169},
     zbl = {1061.35524},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1999-2000____A6_0}
}
Serfaty, Sylvia. Vorticité dans les équations de Ginzburg-Landau de la supraconductivité. Séminaire Équations aux dérivées partielles (Polytechnique) (1999-2000), Talk no. 6, 14 p. http://www.numdam.org/item/SEDP_1999-2000____A6_0/

[A] A. Abrikosov, On the Magnetic Properties of Superconductors of the Second Type, Soviet Phys. JETP 5, (1957), 1174-1182.

[AB] L. Almeida et F. Bethuel, Topological Methods for the Ginzburg-Landau Equations, J. Math. Pures Appl., 77, (1998), 1-49. | MR 1617594 | Zbl 0904.35023

[AM] E. Akkermans et K. Mallick, Vortices in mesoscopic superconductors, et Vortices in Ginzburg-Landau billiards, à paraî tre dans J. Phys. A, (1999). | MR 1732545

[ASS] A. Aftalion, E. Sandier et S. Serfaty, Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity, en préparation. | Zbl 1027.35123

[BBC] H. Berestycki, A. Bonnet et J. Chapman, A Semi-Elliptic System Arising in the Theory of Type-II Superconductivity, Comm. Appl. Nonlinear Anal., 1, n o 3, (1994), 1-21. | MR 1295490 | Zbl 0866.35030

[BBH] F. Bethuel, H. Brezis et F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, (1994). | MR 1269538 | Zbl 0802.35142

[BM] A. Bonnet et R. Monneau, Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, à paraî tre dans Interfaces and Free Boundaries.

[BR] F. Bethuel et T. Rivière, Vortices for a Variational Problem Related to Superconductivity, Annales IHP, Analyse non linéaire, 12, (1995), 243-303. | Numdam | MR 1340265 | Zbl 0842.35119

[BR2] F. Bethuel et T. Rivière, Vorticité dans les modèles de Ginzburg-Landau pour la supraconductivité, Séminaire E.D.P de l’École Polytechnique, exposé XVI, (1994). | Numdam | Zbl 0876.35112

[CRS] S. J. Chapman, J. Rubinstein, et M. Schatzman, A Mean-field Model of Superconducting Vortices, Eur. J. Appl. Math., 7, No. 2, (1996), 97-111. | MR 1388106 | Zbl 0849.35135

[dG] P.-G. DeGennes, Superconductivity of Metal and Alloys, Benjamin, New York and Amsterdam, 1966. | Zbl 0138.22801

[GS] S. Gueron et I. Shafrir, On a Discrete Variational Problem Involving Interacting Particles, SIAM J. Appl. Math. | MR 1740832 | Zbl 0962.49025

[R] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, Mathematical Studies, North Holland, (1987). | MR 880369 | Zbl 0606.73017

[Ru] J. Rubinstein, Six Lectures on Superconductivity, Proc. of the CRM School on “Boundaries, Interfaces, and Transitions". | MR 1619115 | Zbl 0921.35161

[Sa] E. Sandier, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Functional Analysis, 152, No 2, (1998), 379-403. | MR 1607928 | Zbl 0908.58004

[SS1] E. Sandier et S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, à paraî tre dans Annales IHP, Analyse non linéaire. | Numdam | Zbl 0947.49004

[SS2] E. Sandier et S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase, à paraî tre dans Reviews in Math. Phys. | MR 1794239 | Zbl 0964.49006

[SS3] E. Sandier et S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity, à paraî tre dans Annales Scientifiques de l’ENS. | Numdam | Zbl 01702168

[SPS] V. A. Schweigert, F. M. Peeters et P. Singha Deo, Vortex Phase Diagram for Mesoscopic Superconducting Disks, Phys. Rev. Letters, vol 81, n. 13, (1998).

[SST] D. Saint-James, G. Sarma et E.J. Thomas, Type-II Superconductivity, Pergamon Press, (1969).

[S1] S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part I, Comm. Contemporary Mathematics, 1 , No. 2, (1999), 213-254. | MR 1696100 | Zbl 0944.49007

[S2] S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, part II, Comm. Contemporary Mathematics, 1, No. 3, (1999), 295-333. | MR 1707887 | Zbl 0964.49005

[S3] S. Serfaty, Stable Configurations in Superconductivity : Uniqueness, Multiplicity and Vortex-Nucleation, Arch. for Rat. Mech. Anal. , 149, No 4, (1999), 329-365. | MR 1731999 | Zbl 0959.35154

[T] M. Tinkham, Introduction to Superconductivity, 2d edition, McGraw-Hill, 1996.

[TT] D. Tilley et J. Tilley, Superfluidity and Superconductivity, 2d edition, Adam Hilger Ltd., Bristol, (1986).