Bouteilles magnétiques et supraconductivité
Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 11, 20 p.
@article{SEDP_2000-2001____A11_0,
     author = {Helffer, Bernard},
     title = {Bouteilles magn\'etiques et supraconductivit\'e},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     note = {talk:11},
     mrnumber = {1860683},
     zbl = {02124161},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2000-2001____A11_0}
}
Helffer, Bernard. Bouteilles magnétiques et supraconductivité. Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 11, 20 p. http://www.numdam.org/item/SEDP_2000-2001____A11_0/

[Ag] S. Agmon  : Lectures on exponential decay of solutions of second order elliptic equations. Math. Notes, T. 29, Princeton University Press (1982). | MR 745286 | Zbl 0503.35001

[AHS] J. Avron, I. Herbst et B. Simon  : Schrödinger operators with magnetic fields I. Duke Math. J. 45 (1978), p. 847-883. | MR 518109 | Zbl 0399.35029

[BaPhTa] P. Bauman, D. Phillips et Q. Tang  : Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. IMA Preprint Series 1416 (1996). Arch. Rational Mech. Anal. 142 (1998), p. 1-43. | MR 1629119 | Zbl 0922.35157

[BeRu] J. Berger et J. Rubinstein  : On the zero set of the wave function in superconductivity. Comm. in Math. Physics 202 (1999), p. 621-628. | MR 1690956 | Zbl 0938.82063

[BeSt] A. Bernoff et P. Sternberg  : Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39 (1998), p. 1272-1284. | MR 1608449 | Zbl 1056.82523

[BoHe] C. Bolley et B. Helffer  : An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Annales de l’Institut Henri Poincaré (Section Physique Théorique), Vol. 58, n°2 (1993), p. 169-233. | Numdam | Zbl 0779.35104

[Br] R. Brummelhuis  : Exponential decay in the semi-classical limit for eigenfunctions of Schrödinger operators with magnetic fields and potential which degenerate at infinity. Comm. in PDE 16 (1991), n° 8-9, p. 1489-1502. | MR 1132793 | Zbl 0749.35023

[Ch] S.J. Chapman  : Nucleation of superconductivity in decreasing fields. European J. Appl. Math. 5 (1994), Part 1, p. 449-468, Part 2, p. 468-494. | MR 1309734 | Zbl 0820.35124

[CHO] S.J. Chapman, S.D. Howison et J.R. Ockendon, Macroscopic models for superconductivity, SIAM Review 34 (1992), p. 529-560. | MR 1193011 | Zbl 0769.73068

[CSS] J.M. Combes, R. Schrader et R. Seiler  : Classical bounds and limits for distributions of Hamiltonian operators in electromagnetic fields. Ann. of Physics 111 (1978), p. 1-18. | MR 489509

[DaHe] M. Dauge et B. Helffer  : Eigenvalues variation I, Neumann problem for Sturm-Liouville operators. Journal of Differential Equations, Vol. 104, n 2, august 1993, p. 243-262. | MR 1231468 | Zbl 0784.34021

[dG] P.G. De Gennes  : Superconductivity of Metals and Alloys, Benjamin, New York and Amsterdam (1966). | Zbl 0138.22801

[DuHe] M. Dutour et B. Helffer  : On bifurcations from normal solutions for superconducting states. à paraî tre dans Rendiconti del seminario Matematico dell’ Università e del Politecnico di Torino (2001). | Zbl 1072.37039

[Er] L. Erdös  : Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. and PDE. 4 (1996), p. 283-292. | MR 1386738 | Zbl 0846.35094

[GinLa] V. Ginzburg et L. Landau, On the theory of superconductivity, Soviet Phys. JETP 20 (1950), p. 1064-1082.

[GioPh] T. Giorgi et D. Phillips  : The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. Siam J. Math. Anal. 30 (1999), p. 341-359. | MR 1664763 | Zbl 0920.35058

[He1] B. Helffer  : Introduction to the semiclassical analysis for the Schrödinger operator and applications. Springer lecture Notes in Math., n 0 1336 (1988). | Zbl 0647.35002

[He2] B. Helffer  : Semi-classical analysis for the Schrödinger operator with magnetic wells, (after R. Montgomery, B. Helffer-A. Mohamed), Proceedings of the conference in Minneapolis, The IMA Volumes in Mathematics and its applications, Vol. 95. Quasiclassical Methods, Springer Verlag (1997) p. 99-114. | MR 1477211 | Zbl 0887.35131

[HHOO] B. Helffer, T. et M. Hoffmann-Ostenhof et M. Owen : Nodal sets for the groundstate of the Schrödinger operator with zero magnetic field in a non simply connected domain. Comm. in Math. Phys. 202 (1999), p. 629-649. | MR 1690957 | Zbl 1042.81012

[HeMo] B. Helffer et A. Mohamed  : Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, Journal of Functional Analysis 138, n o  1 (1996), p. 40-81. | MR 1391630 | Zbl 0851.58046

[HeMor1] B. Helffer et A. Morame  : Magnetic bottles in connection with superconductivity. Preprint Dec. 2000. | MR 1856278 | Zbl 1078.81023

[HeMor2] B. Helffer et A. Morame  : En préparation.

[HeNo1] B. Helffer et J. Nourrigat  : Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser, Boston 1985. | MR 897103 | Zbl 0568.35003

[HeNo2] B. Helffer et J. Nourrigat  : Décroissance à l’infini des fonctions propres de l’opérateur de Schrödinger avec champ électromagnétique polynomial. Journal d’Analyse Mathématique de Jérusalem, Vol. 58 (1992), p. 263-275. | Zbl 0814.35080

[HePa] B. Helffer et X-B. Pan  : Upper critical field and location of surface nucleation of superconductivity. En préparation. | Numdam | Zbl 1060.35132

[HeRo] B. Helffer et D. Robert  : Puits de potentiel généralisés et asymptotique semi-classique, Annales de l’IHP (section Physique théorique), Vol.41, n 3 (1984), p. 291-331. | Numdam | Zbl 0565.35082

[HeSj1] B. Helffer et J. Sjöstrand  : Multiple wells in the semiclassical limit I. Comm. in PDE 9(4) (1984), p. 337-408. | MR 740094 | Zbl 0546.35053

[HeSj2] B. Helffer et J. Sjöstrand  : Puits multiples en limite semiclassique V - le cas des minipuits -, Volume in honor of S. Mizohata 1986,

[HeSj3] B. Helffer et J. Sjöstrand  : Puits multiples en limite semi-classique VI - le cas des puits variétés -, Annales de l’IHP (section physique théorique) vol. 46, 4 (1987), p. 353-373. | Numdam | Zbl 0648.35027

[HeSj4] B. Helffer et J. Sjöstrand  : Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Annales de l’ENS de Pise, Vol XIV (4) (1987), p. 625-657. | Numdam | Zbl 0699.35205

[HoSm] K. Hornberger et U. Smilansky  : The boundary integral method for magnetic billards. J. Phys. A 33 (2000), p. 2829-2855. | MR 1761644 | Zbl 0954.81018

[Ja] Hala T. Jadallah  : The onset of superconductivity in a domain with a corner. Preprint Août 2000. | MR 1852538 | Zbl 1063.82041

[KwPa] K. H. Kwek et X-B. Pan  : Schrödinger operators with non-degenerately vanishing magnetic fiels in bounded domains. Preprint 2000. | MR 1926871 | Zbl 1004.35110

[LuPa1] K. Lu et X-B. Pan  : Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127 (1999), p. 73-104. | MR 1678383 | Zbl 0934.35174

[LuPa2] K. Lu et X-B. Pan  : Eigenvalue problems of Ginzburg-Landau operator in bounded domains. Journal of Math. Physics, Vol. 40, n o  6, June 1999, p. 2647-2670. | MR 1694223 | Zbl 0943.35058

[LuPa3] K. Lu et X-B. Pan  : Gauge invariant eigenvalue problems on 2 and + 2 . Trans. AMS, 352 (3), 2000, p. 1247-1276. | MR 1675206 | Zbl 1053.35124

[LuPa4] K. Lu et X-B. Pan  : Ginzburg-Landau system and surface nucleation of superconductivity. Proceeding of the IMS Workshop on Reaction-Diffusion systems. Chinese University of Hong-Kong, December 6-11 (1999).

[LuPa5] K. Lu et X-B. Pan  : Surface nucleation of superconductivity in 3-dimension. J. of Differential Equations 168(2) (2000), p. 386-452. | MR 1808455 | Zbl 0972.35152

[Mat] H. Matsumoto  : Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields. Journal of Functional Analysis, 129, n o  1 (1995), p. 168-190. | MR 1322647 | Zbl 0859.35081

[MatUe] H. Matsumoto et N. Ueki  : Spectral analysis of Schrödinger operators with magnetic fields. Journal of Functional Analysis 140, n o  1, (1996), p. 218-255. | MR 1404582 | Zbl 0866.35083

[Mel] A. Melin  : Lower bounds for pseudo-differential operators, Ark. Math. 9 (1971), p. 117-140. | MR 328393 | Zbl 0211.17102

[Mon] R. Montgomery  : Hearing the zero locus of a magnetic field. Comm. Math. Physics 168 (1995), p. 651-675. | MR 1328258 | Zbl 0827.58076

[Pan] X-B. Pan  : Upper critical for superconductors with edges and corners. Preprint 2000. Soumis.

[PiFeSt] M. del Pino, P.L. Felmer et P. Sternberg  : Boundary concentration for eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys. 210, (2000), p. 413-446. | MR 1776839 | Zbl 0982.35077

[ReSi] M. Reed et B. Simon  : Methods of modern Mathematical Physics, IV : Analysis of operators. Academic Press, New York, 1978. | MR 493421 | Zbl 0401.47001

[SdG] D. Saint-James et P. De Gennes, Onset of superconductivity in decreasing fields, Physics Letters, 6 :(5)(1963), p. 306-308.

[SST] D. Saint-James, G. Sarma et E.J. Thomas, Type II Superconductivity, Pergamon Press, Oxford, 1969.

[SaSe] E. Sandier et S. Serfaty  : Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Annales IHP (Analyse non-linéaire)17 (2000), n° 1, p. 119-145. | Numdam | MR 1743433 | Zbl 0947.49004

[Sh] I. Shigekawa  : Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold. Journal of Functional Analysis, Vol. 75, n o  1, Nov. 1987. | MR 911202 | Zbl 0629.58023

[Si] B. Simon  : Semi-classical analysis of low lying eigenvalues I, Ann. Inst. Henri Poincaré 38 (4) (1983), p. 295-307. | Numdam | MR 708966 | Zbl 0526.35027

[Ti] M. Tinkham, Introduction to Superconductivity, McGraw-Hill Inc., New York, 1975.

[Ue1] N. Ueki  : Lower bounds for the spectra of Schrödinger operators with magnetic fields, Journal of Functional Analysis 120, n o  2 (1994), p. 344-379. Erratum n o  11 (1995), p. 257-259. | MR 1266313 | Zbl 0805.35025

[Ue2] N. Ueki  : Asymptotics of the infimum of the spectrum of Schrödinger operators with magnetic fields. J. Math. Kyoto Univ. 37, n o  4 (1998), p. 615-638. | MR 1625960 | Zbl 0928.35032