Sur les Champs de vecteurs peu réguliers
Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 14, 15 p.
Classification:  35F05,  34A12,  26A45
@article{SEDP_2000-2001____A14_0,
     author = {Colombini, Ferruccio and Lerner, Nicolas},
     title = {Sur les Champs de vecteurs peu r\'eguliers},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     note = {talk:14},
     mrnumber = {1860686},
     zbl = {1069.35504},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2000-2001____A14_0}
}
Colombini, Ferruccio; Lerner, Nicolas. Sur les Champs de vecteurs peu réguliers. Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 14, 15 p. http://www.numdam.org/item/SEDP_2000-2001____A14_0/

[Ai] Aizenman, M On vector fields as generators of flows : a counterexample to Nelson’s conjecture, Ann. Math., Tome 107 (1978), pp. (2), 287-296 | MR 482853 | Zbl 0394.28012

[BC] Bahouri, H; Chemin, J.-Y Équations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides., Arch. Rational Mech. Anal., Tome 127 (1994) no. 2, pp. 159-181 | MR 1288809 | Zbl 0821.76012

[BD] Bouchut, F; Desvillettes, L On two-dimensional Hamiltonian transport equations with continuous coefficients, Diff. and Int. Eq., Tome 14 (2001), pp. 1015-1024 | MR 1827101 | Zbl 1028.35042

[BJ] Bouchut, F; James, F One dimensional transport equations with discontinuous coefficients, Non linear analysis, Tome 32 (1998), pp. 891-933 | MR 1618393 | Zbl 0989.35130

[Bo] Bouchut, F Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. for Ration. Mech. and Anal. (à paraître) | MR 1822415 | Zbl 0979.35032

[ChL] Chemin, J.-Y; Lerner, N Flot de champ de vecteurs non lipschitziens et équations de Navier-Stokes, J.Differ. Eq., Tome 121 (1995), pp. 314-328 | MR 1354312 | Zbl 0878.35089

[CoL1] Colombini, F; Lerner, N Hyperbolic equations with non Lipschitz coefficients, Duke Math.J., Tome 77 (1995) no. 3, pp. 657-698 | MR 1324638 | Zbl 0840.35067

[CoL2] Colombini, F; Lerner, N Uniqueness of continuous solutions for BV vector fields, Duke Math.J.(à paraître) | MR 1882138 | Zbl 1017.35029

[De1] Desjardins, B A few remarks on ordinary differential equations, Comm.PDE, Tome 21 (1996), pp. 1667-1703 | MR 1421208 | Zbl 0899.35022

[De2] Desjardins, B Linear transport equations with initial values in Sobolev spaces and application to the Navier-Stokes equations, Diff. & Integ. Equ., Tome 10 (1995), pp. 3, 577-586 | MR 1744862 | Zbl 0902.76028

[De3] Desjardins, B Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space, Diff. & Integ. Equ., Tome 10 (1995), pp. 3, 587-598 | MR 1744863 | Zbl 0902.76027

[DL] Diperna, R.J.; Lions, P.L Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Tome 98 (1989), pp. 511-547 | MR 1022305 | Zbl 0696.34049

[Fe] Federer, H Geometric measure theory, Grund. der math. Wiss., Springer-Verlag, Tome 153 (1969) | Zbl 0176.00801

[Fl] Flett, T.M Differential analysis, Cambridge Univ. Press (1980) | MR 561908 | Zbl 0442.34002

[FVR] Bourbaki, N Fonctions d’une variable réelle, C.C.L.S., Paris (1976)

[H1] Hörmander, L The Analysis of Linear PDO, Grund. der math. Wiss., Springer-Verlag, Tome 256-257-274-275 (1983-85)

[H2] Hörmander, L Lectures on nonlinear hyperbolic differential equations, Mathématiques et applications, Springer-Verlag, Tome 26 (1996) | MR 1466700 | Zbl 0881.35001

[HL] Hu, Y; Lerner, N On the existence and uniqueness of solutions to stochastic equations in infinite dimensions with integral-Lipschitz coefficients, preprint 00-39, Irmar (2000) | MR 1967224 | Zbl 1037.60060

[Li] Lions, P.L Sur les équations différentielles ordinaires et les équations de transport, C.R. Acad.Sc. Paris, Série I,, Tome 326 (1998), pp. 833-838 | MR 1648524 | Zbl 0919.34028

[PP] Petrova, G; Popov, B Linear transport equations with discontinuous coefficients, Comm.PDE, Tome 24 (1999), pp. 1849-1873 | MR 1708110 | Zbl 0992.35104

[PR] Poupaud, F; Rascle, M Measure solutions to the linear multidimensional transport equation with non-smooth coefficients, Comm.PDE, Tome 22 (1997), pp. 337-358 | MR 1434148 | Zbl 0882.35026

[Sa] Raymond, X.Saint L’unicité pour les problèmes de Cauchy linéaires du premier ordre, Enseign. Math. no. 1-2, (2),, Tome 32 (1986), pp. 1-55 | Zbl 0625.35009

[Tr] Treves, F Topological vector spaces, distributions and kernels, Pure & Appl. Math.Ser., Academic Press (1967) | MR 225131 | Zbl 0171.10402

[Vo] Vol’Pert, A.I The space BV and quasi-linear equations, Math.USSR Sbornik, Tome 2 (1967), pp. 225-267 | Zbl 0168.07402

[Zi] Ziemer, W.P Weakly differentiable functions, Graduate texts in mathematics, Springer-Verlag, Tome 120 (1989) | MR 1014685 | Zbl 0692.46022