Many–Body Aspects of Approach to Equilibrium
Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 19, 10 p.
@article{SEDP_2000-2001____A19_0,
     author = {Carlen, Eric and Carvalho, M.C. and Loss, Michael},
     title = {Many--Body Aspects of Approach to Equilibrium},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     note = {talk:19},
     zbl = {02124169},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2000-2001____A19_0}
}
Carlen, Eric; Carvalho, M.C.; Loss, Michael. Many–Body Aspects of Approach to Equilibrium. Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 19, 10 p. http://www.numdam.org/item/SEDP_2000-2001____A19_0/

[1] Carlen, E., Carvalho, M. and Loss, M., (in preparation).

[2] Carlen, E., Gabetta, E. and Toscani, G., Propagation of Smoothness and the Rate of Exponential Convergence to Equilibrium for a Spatially Homogeneous Maxwellian Gas, Commun. Math. Phys. 205, 521–546, 1999. | MR 1669689 | Zbl 0927.76088

[3] Diaconis, P. and Saloff–Coste, L., Bounds for Kac’s Master equation, Commun. Math. Phys. 209, 729–755, 2000. | Zbl 0953.60098

[4] Janvresse, E., Spectral Gap for Kac’s model of Boltzmann Equation, Preprint 1999.

[5] Kac, M., Foundations of kinetic theory, Proc. 3rd Berkeley symp. Math. Stat. Prob., J. Neyman, ed. Univ. of California, vol 3, pp. 171–197, 1956. | MR 84985 | Zbl 0072.42802

[6] Gruenbaum, F. A., Propagation of chaos for the Boltzmann equation, Arch. Rational. Mech. Anal. 42, 323–345, 1971. | MR 334788 | Zbl 0236.45011

[7] Gruenbaum, F. A., Linearization for the Boltzmann equation, Trans. Amer. Math. Soc. 165, 425–449, 1972. | MR 295718 | Zbl 0236.45012

[8] McKean, H., Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas, Arch. Rational Mech. Anal. 21, 343–367, 1966.