Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 21, 20 p.
Lafitte, Olivier 1

1 CEA DM2S/DIR, Centre d’Etudes de Saclay, 91 191 Gif sur Yvette Cedex, CMAT, Ecole Polytechnique, 91 128 Palaiseau Cedex
@article{SEDP_2000-2001____A21_0,
     author = {Lafitte, Olivier},
     title = {Sur la phase lin\'eaire de l{\textquoteright}instabilit\'e de {Rayleigh-Taylor}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:21},
     pages = {1--20},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     zbl = {02124170},
     language = {fr},
     url = {http://archive.numdam.org/item/SEDP_2000-2001____A21_0/}
}
TY  - JOUR
AU  - Lafitte, Olivier
TI  - Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:21
PY  - 2000-2001
SP  - 1
EP  - 20
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2000-2001____A21_0/
LA  - fr
ID  - SEDP_2000-2001____A21_0
ER  - 
%0 Journal Article
%A Lafitte, Olivier
%T Sur la phase linéaire de l’instabilité de Rayleigh-Taylor
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:21
%D 2000-2001
%P 1-20
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2000-2001____A21_0/
%G fr
%F SEDP_2000-2001____A21_0
Lafitte, Olivier. Sur la phase linéaire de l’instabilité de Rayleigh-Taylor. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 21, 20 p. http://archive.numdam.org/item/SEDP_2000-2001____A21_0/

[1] S. Benzoni-Gavage, D. Serre, K. Zumbrun Alternate Evans functions and visous shock waves à paraitre | Zbl

[2] R. Betti, V. Goncharov Multiple cut-off wave numbers of the ablative Rayleigh-Taylor instability Phys. Rev. E 50 (5) 3968-3972, 1994.

[3] S. Chandrasekhar Hydrodynamic and hydromagnetic stability Oxford University Press, Oxford, 1961 | MR | Zbl

[4] C. Cherfils, O. Lafitte Analytic solutions of the Rayleigh equation for linear density profiles Phys. Rev E 62 2967-2970, 2000.

[5] C. Cherfils-Clerouin, O. Lafitte, P.A. Raviart Asymptotic results for the linear stage of the Rayleigh-Taylor instability à paraitre dans Mathematical Fluid Mechanics, Birkhauser, 2001. | MR | Zbl

[6] K.A. Gardner, K. Zumbrun The gap lemma and geometric criteria for instability of viscous shock profiles Comm. Pure Appl. Math., 51 (7) : 797-855. | MR | Zbl

[7] V. Goncharov, R. Betti et al, Self consistent stability analysis of ablation fronts with large Froude numbers Phys. Plasmas 3 (4), 1401-1414, 1996 | MR

[8] V. Goncharov, R. Betti et al Self consistent stability analysis of ablation fronts with small Froude numbers Phys. Plasmas 3 (12), 4665-4676, 1996

[9] V. Goncharov Self consistent stability analysis of ablation fronts in Inertial Confinement Fusion PhD Thesis, Univ. of Rochester, N.Y., 1998

[10] B. Helffer, O. Lafitte On spectral questions around the Rayleigh equation en préparation

[11] B. Helffer, J. Sjostrand Multiple wells in the semiclassical limit I Comm. in P. D. E. 9 (4) (1984) 337-408. | MR | Zbl

[12] R.E. Kidder Laser driven compression of hollow shells : power requirements and stability limitations Nuclear Fusion 16 (1) 3-14, 1976

[13] H.J. Kull Theory of the Rayleigh-Taylor instability Physics Reports (Rev. Sec. of Phys. Letters) 206 (5) 197-325, North-Holland, 1991

[14] O. Lafitte Analysis of the discrete spectrum of the Rayleigh equation : application to the linear Rayleigh-Taylor instability Preprint du CMAT 2000-24 (Ecole Polytechnique, Palaiseau 2000).

[15] K. O. Mikaelian Lasnex simulations of the classical and laser-driven Rayleigh-Taylor instability Phys. Rev. A, 42 (8) 4944-4951, 1990

[16] K. O. Mikaelian Connection between the Rayleigh and the Schrödinger equations Phys. Rev. E, 53 (4) 1996. | MR

[17] A.R. Piriz, J. Sanz, L.F. Ibanez Rayleigh-Taylor instability of steady ablation fronts : the discontinuity model revisited Phys. Plasmas 4 1117 (1997) | MR

[18] Lord J.W.S. Rayleigh Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density Proc. London Math. Soc. 14, 170-177, 1883

[19] L. Spitzer, jr, R. Haerm Transport phenomena in a completely ionized gas Phys. Rev II Ser. 89, 977-981 (1953) | Zbl

[20] H. Takabe, K. Mima, L. Montierth, R. L. Morse Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma Phys. Fluids 28 (2) 3676-3682, 1985. | MR | Zbl

[21] G. Taylor The instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proc. Roy. Soc. London Ser. A 201 (1950) 192-196. | MR | Zbl