Effective Hamiltonians and Quantum States
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 23, 13 p.

We recount here some preliminary attempts to devise quantum analogues of certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz continuous function u solving the eikonal equation aėȧnd a probability measure σ solving a related transport equation.

We present some elementary formal identities relating certain quantum states ψ and u,σ. We show also how to build out of u,σ an approximate solution of the stationary Schrödinger eigenvalue problem, although the error estimates for this construction are not very good.

Evans, Lawrence C. 1

1 Department of Mathematics, University of California, Berkeley
@article{SEDP_2000-2001____A23_0,
     author = {Evans, Lawrence C.},
     title = {Effective {Hamiltonians} and {Quantum} {States}},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:23},
     pages = {1--13},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     zbl = {1055.81524},
     mrnumber = {1860693},
     language = {en},
     url = {http://archive.numdam.org/item/SEDP_2000-2001____A23_0/}
}
TY  - JOUR
AU  - Evans, Lawrence C.
TI  - Effective Hamiltonians and Quantum States
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:23
PY  - 2000-2001
SP  - 1
EP  - 13
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2000-2001____A23_0/
LA  - en
ID  - SEDP_2000-2001____A23_0
ER  - 
%0 Journal Article
%A Evans, Lawrence C.
%T Effective Hamiltonians and Quantum States
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:23
%D 2000-2001
%P 1-13
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2000-2001____A23_0/
%G en
%F SEDP_2000-2001____A23_0
Evans, Lawrence C. Effective Hamiltonians and Quantum States. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2000-2001), Exposé no. 23, 13 p. http://archive.numdam.org/item/SEDP_2000-2001____A23_0/

[C-I] Contreras, G.; Iturriaga, R. Global minimizers of autonomous Lagrangians

[E-G1] Evans, L. C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics I, Archive Rational Mech and Analysis, Volume 157 (2001), pp. 1-33 | MR | Zbl

[E-G2] Evans, L. C.; Gomes, D. Effective Hamiltonians and averaging for Hamiltonian dynamics II | MR | Zbl

[EW] E, Weinan Aubry–Mather theory and periodic solutions of the forced Burgers equation, Comm Pure and Appl Math, Volume 52 (1999), pp. 811-828 | MR | Zbl

[F1] Fathi, A. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997), pp. 1043-1046 | MR | Zbl

[F2] Fathi, A. Weak KAM theory in Lagrangian Dynamics, Preliminary Version (2001)

[G1] Gomes, D. Hamilton–Jacobi Equations, Viscosity Solutions and Asymptotics of Hamiltonian Systems, University of California, Berkeley (2000) (Ph. D. Thesis)

[G2] Gomes, D. Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems | MR | Zbl

[G3] Gomes, D. Regularity theory for Hamilton-Jacobi equations | Zbl

[L-P-V] Lions, P.-L.; Papanicolaou, G.; Varadhan, S. R. S. Homogenization of Hamilton–Jacobi equations

[M-F] Mather, J.; Forni, G.; Graffi, S. Action minimizing orbits in Hamiltonian systems, Transition to Chaos in Classical and Quantum Mechanics (Lecture Notes in Math.), Sringer, 1994 no. 1589 | MR | Zbl

[M1] Mather, J. Minimal measures, Comment. Math Helvetici, Volume 64 (1989), pp. 375-394 | MR | Zbl

[M2] Mather, J. Action minimizing invariant measures for positive definite Lagrangian systems, Math. Zeitschrift, Volume 207 (1991), pp. 169-207 | MR | Zbl