La condition nulle pour les équations hyperboliques en dimension deux d’espace
Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 5, 10 p.
@article{SEDP_2000-2001____A5_0,
     author = {Alinhac, Serge},
     title = {La condition nulle pour les \'equations hyperboliques en dimension deux d'espace},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2000-2001},
     note = {talk:5},
     zbl = {1078.35522},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2000-2001____A5_0}
}
Alinhac, Serge. La condition nulle pour les équations hyperboliques en dimension deux d’espace. Séminaire Équations aux dérivées partielles (Polytechnique) (2000-2001), Talk no. 5, 10 p. http://www.numdam.org/item/SEDP_2000-2001____A5_0/

[1] Alinhac S., “Blowup of small data solutions for a quasilinear wave equation in two space dimensions”, Ann. Maths 149, (1999), 97-127. | Zbl 1080.35043

[2] Alinhac S., “Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions II”, Acta Math. 182, (1999), 1-23. | Zbl 0973.35135

[3] Alinhac S., “Blowup for nonlinear hyperbolic equations”, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser (1995). | Zbl 0820.35001

[4] Alinhac S., “The null condition for quasilinear wave equations in two space dimensions I”, Preprint, Université Paris-Sud, Orsay, (2000). | Zbl 01682128

[5] Alinhac S., “The null condition for quasilinear wave equations in two space dimensions II”, Preprint, Université Paris-Sud, Orsay, (2000). | Zbl 01708597

[6] Christodoulou D., “Global solutions of nonlinear hyperbolic equations for small initial data”, Comm. Pure Appl. Math. 39, (1986), 267-282. | Zbl 0612.35090

[7] Hörmander L., “Lectures on nonlinear hyperbolic differential equations”, Math. Appl. 26, Springer Verlag, (1997). | Zbl 0881.35001

[8] Hoshiga A., “The initial value problems for quasilinear wave equations in two space dimensions with small data”, Adv. Math. Sci. Appl. 5, (1995), 67-89. | Zbl 0829.35080

[9] John F., “Nonlinear wave equations. Formation of singularities”, Leghigh University, University Lectures Series, AMS, Providence, (1990). | Zbl 0716.35043

[10] John F., “Solutions of quasilinear wave equations with small initial data. The third phase.”, Lecture Notes in Math. 1402, Springer Verlag, (1989), 155-173. | Zbl 0694.35012

[11] Klainerman S., “Long time behavior of solutions to nonlinear wave equations”, Proc. Int. Congr. Math., Warszawa, (1983), 1209-1215. | Zbl 0581.35052

[12] Klainerman S., “Uniform decay estimates and the Lorentz invariance of the classical wave equation”, Comm. Pure Appl. Math. 38, (1985), 321-332. | Zbl 0635.35059

[13] Klainerman S., “The null condition and global existence to nonlinear wave equations”, Lect. Appl. Math. 23, (1986), 293-326. | Zbl 0599.35105

[14] adhari R., “Petites solutions d’équations d’ondes quasi-linéaires en dimension deux d’espace”, Thèse de Doctorat, Université Paris-Sud, Orsay, (1999).

[15] Li Ta-tsien, “Global existence for systems of nonlinear wave equations in two space dimensions”, Publ. RIMS 231, (1995), 645-665. | Zbl 0864.35075

[16] Lindblad H., “A remark on global existence for small initial data of the minimal surface equation in minkowskian space-time”, Preprint, (1997).