On the stationary Boltzmann equation
Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 1, 11 p.

For stationary kinetic equations, entropy dissipation can sometimes be used in existence proofs similarly to entropy in the time dependent situation. Recent results in this spirit obtained in collaboration with A. Nouri, are here presented for the nonlinear stationary Boltzmann equation in bounded domains of IR n with given indata and diffuse reflection on the boundary.

@article{SEDP_2001-2002____A1_0,
     author = {Arkeryd, Leif},
     title = {On the stationary Boltzmann equation},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     note = {talk:1},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A1_0}
}
Arkeryd, Leif. On the stationary Boltzmann equation. Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 1, 11 p. http://www.numdam.org/item/SEDP_2001-2002____A1_0/

[1] Arkeryd, L., Cercignani, C., ’On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation’, Comm. Part. Diff. Eqns. 14, 1989, 1071-1089. | Zbl 0688.76053

[2] A rkeryd, L., Nouri, A., ’The stationary Boltzmann equation in the slab with given weighted mass for hard and soft forces’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27, 1998, 533-556. | Numdam | Zbl 0936.76076

[3] Arkeryd, L., Nouri, A., ’On the stationary Povzner equation in three space variables’, J. Math. Kyoto Univ. 39, 1999, 115-153. | Zbl 1010.35022

[4] Arkeryd, L., Nouri, A., ’L 1 solutions to the stationary Boltzmann equation in a slab’, Ann. Fac. Sci. Toulouse Math. 9, 2000, 375-413. | Numdam | Zbl 0991.45005

[5] Arkeryd, L., Nouri, A., ’The stationary Boltzmann equation in IR n with given indata’, to appear in Ann. Scuola Norm. Sup. di Pisa. | Zbl 02217248

[6] Cercignani, C., Illner, R., Pulvirenti, M., ’The mathematical theory of dilute gases’, Springer -Verlag, Berlin, 1994. | Zbl 0813.76001

[7] DiPerna, R. J., Lions, P. L., ’On the Cauchy problem for Boltzmann equations: Global existence and weak stability’, Ann. Math. 130, 1989, 321-366. | Zbl 0698.45010

[8] DiPerna, R. J., Lions, P. L., Meyer, Y., ’L p regularity of velocity averages’, Anal. Non Lin. 8, 1991, 271-287. | Numdam | Zbl 0763.35014

[9] Grad, H., ’High frequency sound recording according to Boltzmann equation’, SIAM J. Appl. Math. 14, 1966, 935-955. | Zbl 0163.23203

[10] Guiraud, J. P., ’Problème aux limites intérieur pour l’équation de Boltzmann en régime stationaire, faiblement non linéaire’, J. Méc. Théor. Appl. 11, 1972, 183-231. | Zbl 0245.76061

[11] Heintz, A., in preparation.

[12] Maslova, N., ’Non linear evolution equations, Kinetic approach’, Series on Advances in Mathematics for Applied Sciences, Vol 10, World Scientific, 1993. | Zbl 0846.76002

[13] Panferov, V., ’On the existence of stationary solutions to the Povzner equation in a bounded domain’, 2000, submitted.

[14] Ukai, S., Asano, K., ’Steady solutions of the Boltzmann equation for a gas flow past an obstacle; I existence’, Arch. Rat. Mech. Anal. 84, 1983, 249-291. | Zbl 0538.76070