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Boundary layers and time oscillations in rotating fluids

J.-Y. Chemin * B. Desjardins { I. Gallagher { E. Grenier

Introduction

We are interested in fast rotating viscous fluids between two horizontal plates with Dirichlet
boundary conditions. More precisely, we shall study the limit when ¢ goes to 0 of the following
system:

&
O + div(u® @ u) — vApu® — Bediuf + % = —Vp°
(NSC;) divguE = 0
Up—g = Uo € L3()

where 2 = R? x]0, 1[. We shall use the following notation: if u is a vector on R® we state u =
(ul,u?,u®) = (u",u®), and we will note Aj, = 82 + 02. Moreover, if f is a function on Q, Ff
(and also f) will denote the Fourier transform with respect to the horizontal variable .

These equations arise in physical contexts when one studies oceanic or atmospheric mo-
tions. Basically under high rotation, a three dimensional fluid tends to behave like a two
dimensional one, and to become invariant in the direction of the rotation (see for instance the
monographs [8],[11]). Moreover, keeping in mind this anisotropy, it is usual to consider an
anisotropic viscosity like in (N .SC;), the horizontal “turbulent” diffusion being larger than the
vertical one. In the periodic case we refer to [1],[7],[9] for mathematical studies. For previous
studies in the Dirichlet case, we refer to [6] and [10]. Our goal here is to present the results
obtained in [5].

In the sequel, we shall assume that ug-n = ud = 0 on 99, and divug = 0. That implies
that the vertical mean value of the horizontal part on the vector field is divergence free as a
vector field on R2.

First of all we shall recall results concerning the linear problem in the well prepared case,
which means that the function uy does not depend on the vertical variable 3. Then we shall
investigate the more delicate case when the initial data ug does actually depend on the vertical
variable z3. The result we shall present here is the following.
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Theorem 1 Let ug be a divergence free vector field in L? such that u3 ,q = 0. Let u® be a
family of weak solutions of (N SC;) associated with uy. Denoting by u the global solution of
the two—dimensional Navier—Stokes equations

ot +divy,(T®u) —vAL T+ Vip+v28u=0 in D'(RT xR3?),

1
divy,z =0, and ﬂ‘t:():/ uo(xp, x3)drs,
0

we have
||U5 — (ﬂ, O)||L°°(R+;Ll200(R2 X]O,l[)) + ||Vh (UE — (ﬂ7 0)) ||L2(R+;LI2OC(R2 X]O,l[)) — O Wheﬂ g — O

This result is specific to the domain R? x]0, 1[. The key point for the proof of this theorem
is that the dispersive phenomenon studied in [3] and [4] is not affected by boundary layers.

Before explaining the proof of that result, let us state some definitions and notations. As
the phenomenon studied here is obviously anisotropic, it is natural to introduce the spaces H*°
which are defined as the closure of smooth compactly supported functions on 2 for the (semi)
norm

1/2
def s
£l 50 = (/2 |énl? |7f(§h7$3)\2d§hdfv3> :
R* x]0,1]

We also introduce

t
Brw) € sup {Iw@IE: + [ IV*@)]adt'}  and

_ def t t
Er(v) ¥ sup {03+ [ IV 3t + [ low)]Gear ).

1 Recollection of results in the well prepared case

Let us briefly recall some results of [10] concerning the well prepared case in the linearized
situation. The purpose is to have information on approximate solutions of

5 € 2, ¢ 63><1)E € e -
Opv° — vVARV® — Bedzv -l-T = —Vp*+f¢ in Q
(FRFS) dive® = 0 in 5
V=g = Y5 with vy =0
vy, =0
)

with lin(l) fé=fin L2(R,; H~10) and liII(l) v§ = Tg in L2, where f € L2(R*; H~1(R?)). In all
e— e—
that follows, we shall denote

def

X
Lfv = 0w — vApv — ﬁsagv + lakiy

In [10], it is proved in particular that

lim+® = (7,0) in L®R" L) NL*RT;HY),

e—0
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where v is the solution of
00 — vART + /28T —Vp+f in RYxR2?
(LE) div, T 0 in R"xR?
Tig = Uo with 73 =0.

The precise result is the following.

Lemma 1 Let T be in R and let ¥ be a divergence free vector field in L=([0,T]; L?(R?))
whose gradient belongs to L%([0,T] x R?). Let us assume that its Fourier transform is sup-
ported in the ball of center 0 and radius N. Then a family of smooth divergence free vector

fields (vgy,,)e>0 whose value is 0 on the boundary of §) exists such that

LEUpr = 0y — VARLT + \/2/86-}— ON((‘:%) in Lz([O,T], H_l’o)_

The vector field vg,, goes to v in the following sense: a constant Cy exists such that
Er(vS,, — ©) < Cne? Er().
Moreover the family (vg,,) satisfies the following estimates
T h 2
| sup IV ) Bageydt < CnEn(D)
0 z3€]0,1]

T 1 _
Vp € [2,00], /0 /0 A(w3) 19505y (1, 73) |2, ey dtdes < OnBr(v) and
T 1 _
] @) 10005yt 20) B oydtdas < CeTr(o)
where d(x3) denotes the distance from z3 to the boundary of |0, 1].

To simplify notations, we shall note in the following v = (7, 0).

2 The linear problem in the ill prepared case

The goal of this section is to construct approximate solutions to

eg X v°

O — vARVE — Bedv® + — = —-Vp* in Q
(FRFE) le ¢ = 0 In Q
Vig = Vo
vfaﬂ = 0.

First of all, we shall rewrite the system (FRF¢) in terms of the Fourier transform of the
horizontal divergence and vorticity. To do so, let us decompose the horizontal part of the
initial data on the Hilbert basis (cos(knz3))ren of L2(]0,1[). We can write for any horizontal
vector field v,

v (zp, z3) = Z VP (zp) cos(kmas). (2.1)
keN
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Note that the fact that v is divergence free implies that

I . :
ve(zp, 3) = — Z e divy, vg’h(xh) sin(kmxs). (2.2)
k>1

The choice of the basis (cos(knzs))ren for the horizontal component ensures that the bound-
ary condition U3| oa = 0 is satisfied. For reasons which will appear clearly when we deal with
dispersive phenomena, we need to avoid extreme horizontal frequencies. So we approximate
any divergence free vector field v of L? by

N
on & F Y (e (€0)55"(64) cos(knas), —%1% (&) F divi vf" (&) sin(knas))
k=0

where Cy denotes the set of all ¢, in R? such that |¢,| € [N~!, N]. Let us define the following
notation:

Jl(izeffdivhvh, o d:ef]-"curlhvh, ﬁd:ef}—p and Wd:ef(&ha@h’fvg')‘

For the sake of simplicity in the notation, we drop the € in c?l, oF, p" and W. In the
following II; denotes the projection on the first coordinate. Then for vectors of the type

(Wk’h(t) cos(kmzxs), — %Hl w (t) sin(kmz3), )

and pressures of the type p* cos(kmx3) the rotating fluid system is equivalent to the following
ordinary differential system

d ]. ~
( ZWEL L VG P W 4 Be(kr)? W — -2 = g7t
%Wk;g_l_ V|§h|2Wk’2 +B€(k7T)2Wk’2 + EWk,l = 0
4 d
aI/Vk;’3_l_U|é-h|2vvk:,3_'_186(]{:,”.)2V[/'k5,3 = kﬂ'ﬁk
WL kRS =
\ W|t:0 = W().

The divergence free condition enables one to transform that system into the following one:

1
Ly e, PWER 4 fe(km)2 Wb — _RWMt =0

(FRF,g){ dt
Wk,h|t:0 — Wéc,h

(0 =X def (k)2 7
R’“_<1 0 ) and A’“‘(|5h|2+<im>2) '

In order to find the interior solution at order zero, and to get rid of the e ! terms in the equa-

with

N
. 1 .
tion, let us write W = kgl (Ek (g) Wk(t) cos(knzs), _HHIE’“ ( ! ) Wwk(t) sin(kwx;;)) where Ly,

9
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is a function from R™ into £(R?) and W¥ is a function from R* into C2, to be determined.
Then looking at the terms of size ¢! in the above equation (FRFf), we get

Lr+ RpLy, =0 with L(0) =1d,

COS Tk A sin 7y,
Li(T) = 1 . (2.3)

— < SINTg COS Ty,
Mk

SO

with, as in all that follows, 7, = A;7. Let us remark that when & = 0, (this corresponds of
course to the well prepared case recalled in the previous section), we get £; = Id because in
this case A\ = 0.

To state the approximation lemma, we need to define the following family of opera-
tors (£(7))rer: for any vector v of the form (2.1,2.2),

(L)) (znzs) % @Oy +f12( () Lx(r) A1 (E,)55 (&) cos(bmzs),

%Sh - A(&R) L (1) ATH(ER)TH (1) Sin(kﬂ'.’ljg,))

. . def [ &1lénl > —Ealép] 2
where Ly, is defined by formula (2.3) and with A(¢,) = Hlenl? alal? ) Let us note
2(n 11&h

that (£(7))rer is bounded in £(H*?) for any real number s. This operator £(7) is the Rossby
wave operator. Similarly we shall need the definition of the following “Ekman operator”:

def

(Ev)(zn,ms) = V2B (™" (wn +f12( (6n) BA™ (60)0"" (é0) cos(kzs),
%fh A€ BrA ()P (&) sinkrzs
with

(@ [T MO )

def % + def 1 23
By = "—F1— | w+n and =<1¢—) :
kT Yk - +

Lemma 2 Let (vy)yen be a bounded sequence in the space L= ([0,T]; L?) N L2([0,T]; H?)
of divergence free vector fields of the form

def

Z(Akh €n) cos(kmzxs), —%fh . ﬁ%h(fh)sin(kﬂxg))

with Supp U o5k h(fh) C Cn. A sequence of families (v}, y)nven of smooth divergence free

vector fields Whose value on the boundary of () is 0 exists, such that
t
“Vapp,N = £ (g) (37:UN —vApuN + 5UN) — VDapp.n + Ry where

XXIV-5



Vn, AN1, VN > Ni, Jeg / Ve < ¢, HRfV||L°°(R+;H*1:0)DL2(R+;L2) <n. (2.4)

t . .
The vector field vg,, y converges to L (—) vy in the following sense: a constant Cx exists
’ €
such that y
Er (Upr,N - ﬁ(g)UN) < CneEr(vn).

Moreover the family (Uzppy ) satisfies the following estimates

T
| sup IV, () [3ageydt < CnEr(on)
0 5636]0,1[

T /1 -
Wp € [2,00], /0 /0 d(23)505pp (1, 73) |2 oy dides < CnFr(vy) and
T rl t

2
/0/0 d(.’133) 83(’()2;010,]\[—[,(5)1)1\{)

Remark. In the proof, we shall forget the part associated with 179\}h because this case is
nothing but the well-prepared case.

2
dtdrs < CpyeEr(vy).
L (R?)

Let us give an idea of the proof of this lemma, which is one of the key points of [5]. In
horizontal divergence and curl formulation, the system (FRF¢®) becomes

( 1
OW! + V|G P W' — Beds W — §W2 = |[&°p
IW? + V|6, |PW? — BedzW? + W' = 0
(FRF) W3 + v|&,PW3 — ﬁe&%Ws = —05p
Wi+ sWw? = 0
Wio = Wo
\ Woq = 0.

From now on, we shall only consider the above system. Let us search for an approximate
solution of the form

W = Wyint + WoBL + Wi int +eWrpL +---  and

. 1. 1. N N
p = Ep—l,z’nt + gp—l,BL + Do,int + Po,BL + -

. . t
where each component of (v, int, Pj,int) is a function of the form f (—, t, xg) and each component
€

I3 1—.%'3

t t
of (vj,Br,pj,BL) is a function of the form g(—,t, ) + h(g,t,
e e

) - In all that follows, we
shall denote 7 = ¢/e. First we have to determine the form of W} ;4 and p_1 jn¢. Considering

the decomposition of the initial data, we look for W ;»: of the form

N
t\~ 1 in ‘
kgl (Ek (g) W&mt(t) cos(kmxs), — Eﬂlﬁk (E) W&mt(t) s1n(k7r:1:3)) .
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Now let us write

N

def

Wo,int,N 2t E (L’k( )WOmtcos(kﬂxg) T om Hlﬁk( )WomtSID(kﬂ'$3)) (2.5)
k=1

We have to determine the boundary layer of size €°. As the third component of the interior
solution at order 0 is identically 0, then the vertical component of the boundary layer of size °
vanishes. This implies that d3p* 1,51 = 0. We recover the well known fact that the pressure
does not vary in the boundary layer. Now let us study the term of size e ! for the horizontal

component of the boundary layer. As cos(kn) = (—1)¥ we look for the boundary layer of the
form

1—
€

W(;ch deka( )£k< )WOznt+( )Mk< )ﬁk( )WOmt

The term of size e ! of 8¢W££L BedIW, 0 BL + RWO 'z, must be equal to 0. We infer

MLy — BM}' Ly, + RMp Ly, = 0.

In the case when k = 0, we have £; = Id. Now let us assume that £ > 1. As Lr = —Ry Ly, it
turns out that the equation on the boundary layer is

—BM; = MRy, — RM;
My(0) = -1d
My(+o0) = 0.

We infer )
Mi(¢) = = 3 Sic exp(=¢i) M (¢ir) - with
+
+ /. def cosf FApsind + def +def B + def i )
M7(9) = (—sin& :F)\kcost9>’ G = 2/81::’ B = 1+ Mg and - 1y 1:F/\;C

So stating Eki def 262,3%, we infer by definition of £ that
1 + ( I3 ) + ( xs3 )\kt) =k
5 D i exp| == | M ——= F — | Woins
23 ,/E,;t N

— X3 + 1— I3 )\kt
15, exp( )Mk ( F )Wo int-
Z VE: VEE e/

The fact that the boundary layer must be divergence free implies that we have to introduce
a vertical component of the boundary layer of size €. It is given by the following formula:

k.3 k,h
€0sWy g, = —ILWg -

XXIV-T71



So with the notation cs* % cos + sin and 'y,:ct def ,uf 25,;‘[ , we get after integration

1 T3 _( =x3 At k1
Wigo = __Z7I:cteXP(_ )(CS ( + —>Wo" t
’ 43 VEE JEE ¢/
T At ~
e (2w )
k
1 1— I3 _(1-— I3 )\kt =7kl
+(_1)k1 Z'Y;ct exp <_ \/E> (CS < \/Ei:t + T)Wo,int
+ k k

11—z At =
:F/\kcs+< > ¥ L)W(i:iit)'

It is obvious that those two functions do not vanish respectively in 3 = 0 and x3 = 1. More
precisely, up to exponentially small terms, we have

k,3 _ Errrk,3 _ t
W1,3L|$3:0 =—(-1) Wl,BL|w3:1 =—fk (g)

with N
def v Ti7 7
Fe(r) €32 T (o5 (r) Wi F Mecs™ (n) W', )-
+

Now let us have a look at the terms of size €° in the interior system. The system of equations
is the following.

En?Po,int,N
(01 + VIER ) Wit + O Wiy v + BW iy - = ( e

0
2\1173 3 _ ~
(O + VIER I W inen + OrWiien = —03D0,int,N
1 3 _
Wiy +03Weiun = 0 .
3 _ :
Wl,int,N‘aQ - _Wl,BL|39‘

We are going to reduce this problem to a problem with a homogeneous Dirichlet boundary
condition. To do so, let us first define the function r, where

re(xs) =1 when £ is odd, 7¢(x3) =1—2x3 when / is even.
Then let us state

N
def .
Wl,int,N =< Z fg(T) <(5g,0,7‘g($3)) with 6, =1+ (—1)[
/=1

and let us look for Wy ;¢ n of the form W1 jne v = leim, N+ W int, v The above system can
be written

( T7h &n|?Do,int,N
(0 + V|§h|2)W(§b,int,N + (07 + R)Wl,int,N = (‘ | 0 " ) —(0r + R)wimt,N
=73 ~
(O +v |§h|2)V_V(§’,mt,N + 8TW%,int,N = _33p0,int,N - 8Tmiint,N
W L int,n +£3W1,int,N =0
L Wl,mt,N|3Q = 0.



The original boundary condition appears through a forcing term. Considering this boundary
condition on Wy ;4 v, it is natural to look for Wy jns v and  Po jne, v of the form

Wiintn = (Z W1 it N cos(kmzs), Z Wlkth N sm(km:g)) and

N

Point,N = D Pl ins cOS(kmxs).
k=0

Now let us decompose the forcing term in a low and a high vertical frequency part. In L2(]0, 1[),

we have

= Z reksin(krrs)  with 7o dof 1 (14 (=1)**H, (2.6)

i>1 km

N
So we write W, ;.» vy = Fy+Ry with Fy def Z fe(7) <5g, 0, Z ek Sin(lmrxg)) . Obviously, R%,
=1 k=1

satisfies the property (2.4). Now let us project on cosine and sine functions, which yields

d o~ _dfe,
(d,’_ +R)W1 int,N = Z{ 5[7 +fz(7')(0,(5£)}
=1
d —
E (I)Z?nt,N =0

and, when k # 0, considering the form of W jn: v given by (2.5)

d d —Fk,h 25k
() (35 + VGl ) Wi + (5 + B) Wiy = ( [ i )
d

d k3 dfe
—II; Eﬁk(T)(dt + v[&] )W(fmt + Ewl,int,N = —KZN Tk T k7Bt -

Let us solve first the system when & = 0. As W(l):?nt, ~ = 0 the divergence free condition
implies that W(l):;m’ ~ = 0, so we get

N +
i it 174,
Wi = (0.5 35 (Fes™ (Wi + dees* (0 Wi E).0).
=1

We also get an explicit formula for pgvmt’ N Whose computation is left to the reader. Now let
us study the case when k # 0. As usual, the divergence free condition determines the pressure
and the system becomes

d . d o krrer|énl® dfe
Li(T )(dt + v|&n| )WO,int + (E + Rk)Wl,’int,N = | G2+ (km)2dr | =0. (27
(<N 0

The proof of the following lemma is left to the reader.
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Lemma 3 We have the following identity:

krrerlénl® dfe .
— S| 2+ Gm)2dr | = Lil(r) (BwZBk,e(r))Wo’i,-m

(<N 0

where By, ¢(T) are matrices whose coefficients are cosine or sine functions of (A £ )7 for £ # k
and of \,7 when £ = k and where

(1- )\%))\k Ye — Vi )\k('Yk + % )

+ —
Ye T Vi -+
oAU e

By =

Immediately we infer

W(;c,int(t) = exp(—u|§h|2t - Pkt) ( Wéc,int(o) with

1
W sindpt  cos ot

cos Ot A\, sin 03t )
k

def (1 — A2\ _ def (1 =M\, _
Lo (L= A A 4k)k('y§+7k),Pk=67( DN (- 8) and

Ok 1

kh ty 1A
Wiinen = Lk (g) Z Ck,é(g) W5 int(t)
—1

where Cj, ¢ are (2 x 2 valued) smooth bounded functions of 7 whose derivatives are the By .
So applying the usual procedure for the higher order terms for boundary layers, we find the
complete expression of the approximate solution and the lemma is obtained, up to the proof
of the three last estimates for which we refer to [5].

3 The non linear estimates

This section consists in proving Theorem 1. We shall skip most of the details and simply give
the steps of the proof. Let us first define

def [1
To(zn) = /Ouo(-fh,l‘:a)d%,

k,h def 1 [1
ug™ (wn) = 5/0 ug(zh, 23) cos(knzs)des,
o, N def f‘l(lcNﬁo) and
def . _
ugy = FH(Leyig").

For any positive real number 7, an integer Ny exists, depending of course on 7 and on the
initial data ug such that

lluo — o, N — o N|L2 < g with

. L. .
o N = Z (u’g:?v(a:h) cos(kmzxs), % divy, ug,’?\,(wh) sm(k:mc;;)).
k=1
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Let us define uwy as the solution of

oiy —vARTN +2Buny = —Vby —F leyF(divy(w®u)))
(LE,,”/J)) divpuy = 0
UN|t=0 = UQ,N-

A basic energy estimate implies that for any positive 1, an integer Ny exists such that, for
any t in R™ and any N greater than or equal to Ny, we have
t 2
fa(t) — ax Ol +2 | (VI @) = @)E: + VB lat) —an ()l )t < T (3.)
Sobolev embeddings also imply that @ belongs to L*(R™ x R2) and wy converges to @ in the
space L*(R™ x R?). Thus we have

lim F(1c, F(divy(@®@))) = lim divy(Ty @ Ty) = div, (7 @ T) (3.2)
N—00 N—00
in the space L2(R™; H~1(R?)).

Now we shall use Lemmas 1 and 2 to define the (sequence of) approximate solutions of the
system. Let us define (ug,, v):>0 as the families given by Lemma 1 applied with vy = @y
solution of (LE, g); it represents the “well prepared” part of the solution. The so-called “ill
prepared” part is defined as (uj, y), the families given by Lemma 2 applied with vy equal to
the solution of the linear problem

oy —vApuy +Evy = —Vpn
divoy = 0
UN¢=0 = Uo,N-
Of course, we state ug,, v def Upyp v T Ui, - Let us derive the equation satisfied by ug,, y-
Using Lemmas 1, 2 and (3.2), we get that
Eufzpp,N = ?V + vps + divh(ﬂN 029 HN)- (33)

Using energy estimates, we get that

e O3 + 20 [ 19" ) e + 26 [ 05ty ()]
< luollZ: — /Ot(dth(ﬂN ® TN ) (¢)[ugpp,n (t) L2dt’ + piv
where, as in all that follows, p%, denotes generically a scalar quantity such that
Vn, 3Ny, YN > Ny, Jeo/ Ve < eg, pyv <.

Thanks to Lemma 2 we have

t 1
[ty = £ (£ ) o llamesmnoy < Oxe¥ualze
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So, as div,(ux ® Tx) belongs to L2(R1 x), we have

/Ot(dth (@ @ N (t)|ugpp,n (') L2dt" = /Ot(divh(ﬂzv @an)(t)[an(t'))2dt’

+ [ (a0 an@1e(E)on(e)) ar+ s

and an easy computation shows that

t
| (ivi(@ @ ) (@), (¢)) ot = piy.

As an immediate consequence, it turns out that

t t
lugpp, v (£)172 +2V/0 ||VhUpr,N(t')||%zdt'+2ﬁ€/0 105115, () 72t < JluollZ> + piy- (34)
Equation (3.3) can be rewritten as
LEupr,N + upr,N : Vupr,N = ?V + fo + FJiI

with dof
e der ¢ 5 — —
Fy = ugpp N - VUgpy v —UN - VUN.

Now we use the classical method to prove weak-strong type estimates. We are exactly in
this situation because we consider a weak solution u* without any additionnal regularity and
a r'egular (approximate) solution Ugpy v+ Let us denote by 6% the difference u® — ug,, , we
write that

B0 5@ + 20 [ 195 @Ol + 20 [ 065" (@t
= IO+ 20 [ 19+ 25 [ 0w () o
i O + 20 [ 19" () + 26 [0t )]
2 () ()2~ 40 [ (T (T iy () ol

t
~ 4Be | (050 ()| Buusyy, () 2.
0 b

As u® is a Leray solution of (RF.), it satisfies the energy inequality. So thanks to Inequal-
ity (3.4) we get

t
E*(t) < 2lluollZ> — 2(ufugpp n) 12 — 4V/0 (V0 () [V gy (1)) 2t

t
— 4B [ (00u* ()00t x (¢)) 12t + piv-
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The right-hand side is then transformed in a classical way (see [5]): using the fact that uf, v
is a smooth function vanishing at the boundary (and using also Lemmas 1 and 2), we get

(wlugpp n)r2(t) = lluollZ: + piv

t h h t
=20 [ (VP () V" () ot = 2B [ (@50 (¢ Outy (¢ o
t t
— [ (@) VOt () adt + [ (F (¢ (¢) ot
and we infer that
t t
E°(t) < 2/0 (8°(t') - VO (") Jugyp () L2dt + 2/0 (FR(")|us (t') p2dt’ + piy-

The theorem will be obtained once we prove the following lemmas.

Lemma 4 Let u (resp. v) be any vector field (resp. divergence free vector field) in H%(Q)
(resp. H}()). If we define

def .
N(u)2 :e Su[(I))l} ||th(~,x3)||%2(R2) + /0 CIZ(QT?,)||83’IL(7 333)||i4(R2)d$3,
xr3€|0,

then we have c
14
(v Folu)zz < ZIV" ol + SN ()2 ole.
In the following lemma we note ON(e%) a quantity of the order of magnitude eé, depending

on N.

Lemma 5 We have

MI»—A

t
| @) @) at = On(eh).
Before showing how to prove those results, let us finish the proof of the theorem. We get
< 2 [V @t + S [Ny P15 @) + g
But Lemmas 1 and 2 imply in particular that there is a constant Cx such that for any ¢,
| N i (0)2dt < Onluola.

So a Gronwall lemma implies that

(o.9]
sup [ (8) = i (O3 + 20 [ IVA () = () Fa0 = o,

and the result follows quite easily.
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Now let us go back to the two technical lemmas stated above, starting with Lemma 4. We
have to estimate

Lk d:ef/ 0¥ (2)v* (2) O (z)d.
Q

The case when k # 3 is simply a consequence of a 2D Gagliardo—Nirenberg inequality. In the
case k = 3, we need the following Hardy—type lemma, whose proof is left out and yields quite
directly the expected result.

Lemma 6 Let v be a divergence free vector field in H}(Q). Then we have for almost ev-
ery =5 € R?
|U3 (xhv 373)'

sup — =< divhvh Th, 2(10.1))-
zsel0l[  d(z3)? | (@hs )l L2 go,1)

The proof of Lemma 5 is much more delicate. To begin with let us decompose F; as

5 _ 5 5 :
FN — FN,l + FN,2 Wlth
def
£ 4T £ £ € £
FN,l Ugpp,N * VUapp,N — UQ,int,N * vuO,z’nt,N and
def _ _
13 4L 13 13
Fyo = Ugint,n - VUG ity — UN - VUN.

Those two terms are estimated in two different ways. The first estimate is achieved in a
slightly tedious manner, but it only requires Hardy or Gagliardo—Nirenberg—type techniques
and we refer to [5] for details. The second estimate requires the following Strichartz—type
inequality (and hence is only true in the R% x(0,1) case).

t
Lemma 7 Let p € [1,+00] be given, and let us define ug ;,; n def - (—) uy where uy is the
) ) 6

solution of
ouny — vApuny +Euny =0

with the initial data ug n. Then we have
€ _ 11
[40,int, v — UN Lo@+;z00(0)) < One? % |[|ug| 2
The following corollary is the result of an easy interpolation.
Corollary 8 For any p € [1,+o0], any a > 0 and any q €]2,+00], we have
10% (ug,int,n — YN Lo (m+La(02)) = PN-
We refer once again to [5] for the proof Lemma 7. Note that this Strichartz—type estimate, in
the case of rotating fluids, has been investigated in [3] in various situations.
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