Équation de Schrödinger semi-classique avec potentiel harmonique et perturbation non-linéaire
Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 3, 12 p.
@article{SEDP_2001-2002____A3_0,
     author = {Carles, R\'emi},
     title = {\'Equation de Schr\"odinger semi-classique avec potentiel harmonique et perturbation non-lin\'eaire},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     note = {talk:3},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A3_0}
}
Carles, Rémi. Équation de Schrödinger semi-classique avec potentiel harmonique et perturbation non-linéaire. Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 3, 12 p. http://www.numdam.org/item/SEDP_2001-2002____A3_0/

[BG97] H. Bahouri, P. Gérard, Optique géométrique généralisée pour les ondes non linéaires critiques, Séminaire X-EDP, 1996–1997, Exp. No. VIII. | MR 1482814 | Zbl 1068.35522

[BG99] H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., 121 (1999), 131–175. | MR 1705001 | Zbl 0919.35089

[Car00] R. Carles, Geometric optics with caustic crossing for some nonlinear Schrödinger equations, Indiana Univ. Math. J., 49, vol. 2 (2000), 475–551. | MR 1793681 | Zbl 0970.35143

[Caz93] T. Cazenave, An introduction to nonlinear Schrödinger equations, Univ. Fed. Rio de Jan., 1993, Text. Met. Mat. 26.

[CT99] C. Cohen-Tannoudji, Cours du Collège de France, 1998–99, disponible à http://www.lkb.ens.fr/~laloe/PHYS/cours/college-de-france/

[Fol89] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989. | MR 983366 | Zbl 0682.43001

[Fuj80] D. Fujiwara, Remarks on the convergence of the Feynman path integrals, Duke Math. J., 47 (1980), no. 3, 559–600. | MR 587166 | Zbl 0457.35026

[KRY97] L. Kapitanski, I. Rodnianski, K. Yajima, On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), no. 1, 77–106. | MR 1483643 | Zbl 0892.35035

[GG01] I. Gallagher, P. Gérard, Profile decomposition for the wave equation outside a convex obstacle, J. Math. Pures Appl. (9), 80 (2001), no. 1, 1–49. | MR 1810508 | Zbl 0980.35088

[GS84] V. Guillemin, S. Sternberg, Symplectic techniques in physics, Cambridge University Press, 1984. | MR 770935 | Zbl 0576.58012

[Nie95] F. Nier, Une description semi-classique de la diffusion quantique, Séminaire X-EDP, 1994–1995, Exp. No. VIII. | Numdam | MR 1362556 | Zbl 0898.35083

[Nie96] F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. École Norm. Sup. (4), 29 (1996), no. 2, 149–183. | Numdam | MR 1373932 | Zbl 0858.35106

[Rau95] J. Rauch, Lectures on Geometric Optics, 1995, disponible à http://www.math.lsa.umich.edu/~rauch/

[Zel83] S. Zelditch, Reconstruction of singularities for solutions of Schrödinger’s equation, Comm. Math. Phys., 90 (1983), no. 1, 1–26. | Zbl 0554.35031