Du local au global : interpolation entre données peu régulières et quantités conservées
Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 8, 18 p.
@article{SEDP_2001-2002____A8_0,
     author = {Planchon, Fabrice},
     title = {Du local au global~: interpolation entre donn\'ees peu r\'eguli\`eres et quantit\'es conserv\'ees},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2001-2002},
     note = {talk:8},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2001-2002____A8_0}
}
Planchon, Fabrice. Du local au global : interpolation entre données peu régulières et quantités conservées. Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Talk no. 8, 18 p. http://www.numdam.org/item/SEDP_2001-2002____A8_0/

[1] Calderón, Calixto P. Addendum to the paper : “Existence of weak solutions for the Navier-Stokes equations with initial data in L p ” [Trans. Amer. Math. Soc. 318 (1990), no. 1, 179–200 ; MR 90k :35199], Trans. Amer. Math. Soc., Tome 318 (1990) no. 1, pp. 201-207 | Zbl 0707.35119

[2] Calderón, Calixto P. Existence of weak solutions for the Navier-Stokes equations with initial data in L p , Trans. Amer. Math. Soc., Tome 318 (1990) no. 1, pp. 179-200 | MR 968416 | Zbl 0707.35118

[3] Cannone, Marco; Planchon, Fabrice More Lyapunov functions for the Navier-Stokes equations, The Navier-Stokes equations : theory and numerical methods (Varenna, 2000), Dekker, New York (2002), pp. 19-26 | MR 1864494 | Zbl 0999.35071

[4] Chemin, J.-Y. About Navier-Stokes system (1996) (Prépublication du Laboratoire d’Analyse Numérique R 96023)

[5] Chemin, Jean-Yves Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM Journal Math. Anal., Tome 23 (1992), pp. 20-28 | Zbl 0762.35063

[6] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global well-posedness for the Schrodinger equations with derivative (Prépublication) | Zbl 1002.35113

[7] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness results for periodic and non-periodic KdV and modified KdV on and 𝕋 (Prépublication)

[8] Furioli, Giulia; Lemarié-Rieusset, Pierre G.; Terraneo, Elide Unicité dans L 3 ( 3 ) et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Tome 16 (2000) no. 3, pp. 605-667 | Zbl 0970.35101

[9] Gallagher, Isabelle; Iftimie, Dragoş; Planchon, Fabrice On stability of global solutions to the Navier-Stokes equations (Prépublication)

[10] Gallagher, Isabelle; Iftimie, Dragoş; Planchon, Fabrice Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes, C. R. Acad. Sci. Paris Sér. I Math. (2002) | MR 1891005 | Zbl 0997.35051

[11] Gallagher, Isabelle; Planchon, Fabrice On global solutions to a defocusing semi-linear wave equation (to appear in Rev. Mat. Iberoamericana) | MR 1993418 | Zbl 1036.35142

[12] Gallagher, Isabelle; Planchon, Fabrice On infinite energy solutions to the Navier-Stokes equations : global 2D existence and 3D weak-strong uniqueness (2001) (to appear in Arch. Rat. Mech. An.)

[13] Ginibre, J.; Velo, G. The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., Tome 189 (1985) no. 4, pp. 487-505 | MR 786279 | Zbl 0549.35108

[14] Kato, Tosio Strong L p -solutions of the Navier-Stokes equation in m , with applications to weak solutions, Math. Z., Tome 187 (1984) no. 4, pp. 471-480 | MR 760047 | Zbl 0545.35073

[15] Kato, Tosio; Fujita, Hiroshi On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Tome 32 (1962), pp. 243-260 | Numdam | MR 142928 | Zbl 0114.05002

[16] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Global well-posedness for semi-linear wave equations, Comm. Partial Differential Equations, Tome 25 (2000) no. 9-10, pp. 1741-1752 | MR 1778778 | Zbl 0961.35092

[17] Lemarié, Pierre-Gilles Recent progress in the Navier-Stokes problem (2002) (À paraître, CRC Press)

[18] Leray, Jean Sur le mouvement d’un liquide visqueux remplissant l’espace, Acta Mathematica, Tome 63 (1934), pp. 193-248

[19] Lindblad, Hans; Sogge, Christopher D. On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Tome 130 (1995) no. 2, pp. 357-426 | MR 1335386 | Zbl 0846.35085

[20] Planchon, Fabrice Sur un inégalité de type Poincaré, C. R. Acad. Sci. Paris Sér. I Math., Tome 330 (2000) no. 1, pp. 21-23 | MR 1741162 | Zbl 0953.46020

[21] Planchon, Fabrice On uniqueness for semilinear wave equations (2001) (Prépublication) | Zbl 1023.35079

[22] Ponce, G.; Racke, R.; Sideris, T. C.; Titi, E. S. Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., Tome 159 (1994) no. 2, pp. 329-341 | MR 1256992 | Zbl 0795.35082

[23] Von Wahl, Wolf The equations of Navier-Stokes and abstract parabolic equations, Friedr. Vieweg & Sohn, Braunschweig (1985) | MR 832442