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Let (M, g) be an n-dimensional complete, unbounded, connected Riemannian manifold with
a Riemannian metric g of class C∞(M) and a compact C∞-smooth boundary ∂M (which may
be empty). We suppose that M is of the form M = X0 ∪ X, where X0 is a compact, connected
Riemannian manifold with a metric g|X0

of class C∞(X0) with a compact boundary ∂X0 =
∂M ∪ ∂X, ∂M ∩ ∂X = ∅, X = [r0,+∞) × S, r0 � 1, with metric g|X := dr2 + σ(r). Here
(S, σ(r)) is an n − 1 dimensional compact Riemannian manifold without boundary equipped
with a family of Riemannian metrics σ(r) depending smoothly on r which can be written in any
local coordinates θ ∈ S in the form

σ(r) =
∑

i,j

gij(r, θ)dθidθj , gij ∈ C∞(X).

Denote Xr = [r,+∞)×S. Clearly, ∂Xr can be identified with the Riemannian manifold (S, σ(r))
with the Laplace-Beltrami operator ∆∂Xr written as follows

∆∂Xr = −p−1
∑

i,j

∂θi
(pgij∂θj

),

where (gij) is the inverse matrix to (gij) and p = (det(gij))
1/2 = (det(gij))−1/2. Let ∆g denote

the (positive) Laplace-Beltrami operator on (M, g) and let ∇g be the corresponding gradient.
We have

∆X := ∆g|X = −p−1∂r(p∂r) + ∆∂Xr = −∂2
r − p′

p
∂r + ∆∂Xr ,

where p′ = ∂p/∂r. We have the identity

∆]
X := p1/2∆Xp−1/2 = −∂2

r + Λr + q(r, θ), (1)

where
Λr = −

∑

i,j

∂θi
(gij∂θj

),
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and q is an effective potential given by

q(r, θ) = (2p)−2
(

∂p

∂r

)2

+ (2p)−2
∑

i,j

∂p

∂θi

∂p

∂θj
gij + 2−1p∆X(p−1).

We make the following assumptions:

|q(r, θ)| ≤ C,
∂q

∂r
(r, θ) ≤ Cr−1−δ0 , (2)

with constants C, δ0 > 0. Denote

h(r, θ, ξ) =
∑

i,j

gij(r, θ)ξiξj, (θ, ξ) ∈ T ∗S.

We suppose that

−∂h

∂r
(r, θ, ξ) ≥ C

r
h(r, θ, ξ), ∀(θ, ξ) ∈ T ∗S, (3)

with a constant C > 0.
Denote by G the selfadjoint realization of ∆g on the Hilbert space H = L2(M,dVolg) with

Dirichlet or Neumann boundary conditions, Bu = 0, on ∂M . Let χ ∈ C∞(M), χ = 1 on X0,
χ = 0 in Xr0+1. Denote G := (G + 1)1/2. We make the following assumption:

there exist constants T, σ > 0 so that the operators Gσ1χ cos
(
T
√

G
)

χGσ2 and

Gσ1χ
sin
(
T
√

G
)

√
G

χGσ2+1 belong to L(H),∀σ1, σ2 ∈ R such that σ1 + σ2 = σ. (4)

The metric g will be said nontrapping if there exists a constant T0 > 0 such that for every
generalized geodesics (see [3], [4] for the definition), γ, with γ(0) ∈ M \Xr0+1/2, ∃0 < t = tγ ≤ T0

so that γ(t) ∈ Xr0+1. For such a metric, it follows from the result of Melrose-Sjöstrand [3], [4] on

propagation of C∞ singularities that the distribution kernels of the operators χ cos
(
T0

√
G
)

χ

and χ
sin(T0

√
G)√

G
χ are of class C∞(M × M) (this is known as generalized Huyghens principle).

Therefore, (4) is fulfilled for nontrapping metrics.
Given a real s, choose a real-valued function χs ∈ C∞(M ), χs = 1 on M \ Xr0+1/2, χs|X

depending only on r, χs = r−s on Xr0+1, χsχ−s ≡ 1. Denote by G0 the Dirichlet selfadjoint
realization of ∆X on the Hilbert space H0 = L2(X, dVolg).

Our first result is the following

Theorem 1. Assume(2) and (3) fulfilled. Then, for every s > 1/2, there exist constants
C0, C > 0 such that for z ≥ C0, 0 < ε ≤ 1, we have (with j = 0, 1)

‖r−s∇j
g(G0 − z ± iε)−1r−s‖L(H0) ≤ Cz(j−1)/2. (5)

Moreover, if (4) holds, we have

‖χs∇j
g(G − z ± iε)−1χs‖L(H) ≤ Cz(j−1)/2. (6)
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We use this theorem to study the local energy of the solutions of the following mixed problem




(∂2
t + ∆g)u(t, x) = 0 in R × M,

Bu(t, x) = 0 on R × ∂M,

u(0, x) = ϕ(G)f1(x), ∂tu(0, x) = ϕ(G)f2(x), x ∈ M,

(7)

where ϕ ∈ C∞(R), ϕ = 0 in a neighbourhood of the interval (−∞, A0], ϕ = 1 outside a larger
neighbourhood, where A0 = max{C0, C

′
0}, C0 being as in Theorem 1 and C ′

0 being as in (9) and
(10) below. Recall that the solutions to (7) can be expressed by the formula

u = cos
(
t
√

G
)

ϕ(G)f1 +
sin
(
t
√

G
)

√
G

ϕ(G)f2. (8)

Given s > 0 and a function χ ∈ C∞(M), χ = 1 in X0, χ = 0 outside some compact, set

Es(t) =

∫

M

(
|∂tu(t, x)|2 + |∇gu(t, x)|2

)
χ2sdVolg,

Eloc(t) =

∫

M

(
|∂tu(t, x)|2 + |∇gu(t, x)|2

)
χdVolg,

Ẽ(0) =

∫

M

(
|f2|2 + |∇gf1|2 + |f1|2

)
dVolg,

Ẽ−s(0) =

∫

M

(
|f2|2 + |∇gf1|2

)
χ−2sdVolg +

∫

M
|f1|2χ−2s+2dVolg.

To get uniform local energy decay estimates of the solutions to (7) we need to impose additional
conditions on the behaviour of the resolvent of the operator G0. We suppose that there exist
s > 1/2, C ′

0 > 0 and an integer m ≥ 0 so that for z ≥ C ′
0, 0 < ε ≤ 1, the following estimates

hold (with j = 0, 1):

‖r−s∇j
g(G0 − z ± iε)−kr−s‖L(H0) ≤ Cz(j−k)/2, k = 1, ...,m + 1, (9)

‖r−s∇j
g

(
G0 − z ± iεz1/2

)−m−2
r−s‖L(H0) ≤ Cz(j−m−2)/2ε−1+µ, (10)

with constants C > 0 and 0 < µ ≤ 1 independent of z and ε.
Our main result is the following

Theorem 2. Assume (2), (3), (4), (9) and (10) fulfilled. Then, we have, for t � 1,

Es−1/2(t) ≤ O
(
t−2m−2µ

)
Ẽ−s(0). (11)

In particular, if f1 and f2 are of compact support, we have

Eloc(t) ≤ O
(
t−2m−2µ

)
Ẽ(0). (12)
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Remark 1. If (9) holds for every integer k ≥ 1 with s = sk > 1/2 and C = Ck > 0, then (12)

holds with ON

(
t−N

)
, ∀N � 1, in place of O

(
t−2m−2µ

)
.

The key point in the proof of Theorem 2 is the following

Proposition 3. The estimates (5), (6), (9) and (10) imply the following ones (with j = 0, 1)

‖χs∇j
g(G − z ± iε)−kχs‖L(H) ≤ Cz(j−k)/2, k = 1, ...,m + 1, (13)

‖χs∇j
g

(
G − z ± iεz1/2

)−m−2
χs‖L(H) ≤ Cz(j−m−2)/2ε−1+µ, (14)

for z ≥ A0, 0 < ε ≤ 1, with m and 0 < µ ≤ 1 the same as in (9) and (10), and a new constant
C > 0 independent of z and ε.

As an application of the above theorem we get uniform local energy decay of the solutions
to (7) for a class of asymptotically Euclidean manifolds. To describe this class, denote

q[ := r−1 ∂(r2q)

∂r
, Λ[

r := −r−1
∑

i,j

∂θi

(
∂(r2gij)

∂r
∂θj

)
.

Denote by G]
0 the Dirichlet self-adjoint realization of the operator ∆]

X on the Hilbert space

H]
0 = L2(X, drdθ). We make the following assumptions:

∣∣∣q[(r, θ)
∣∣∣ ≤ Cr−δ, (15)

rδΛ[
r(G

]
0 − i)−1 ∈ L(H]

0), (16)

for some constants C > 0 and 0 < δ ≤ 1. We have the following

Proposition 4. Assume (2), (3), (15) and (16) fulfilled. Then, (9) and (10) hold with
m = 0, s = 1 + δ/2, for every 0 < µ < δ.

Corollary 5. Assume (2), (3), (4), (15) and (16) fulfilled. Then, we have, for t � 1,

E(1+δ)/2(t) ≤ Oε

(
t−2δ+ε

)
Ẽ−(1+δ/2)(0), ∀0 < ε � 1. (17)

In particular, if f1 and f2 are of compact support, we have

Eloc(t) ≤ Oε

(
t−2δ+ε

)
Ẽ(0), ∀0 < ε � 1. (18)

Remark 2. It is worth noticing that the above results still hold for the self-adjoint realization
of ∆g + V (x), where V is a real-valued potential, V (x) ≥ 0, provided the assumptions (2) and
(15) are satisfied with q replaced by q + V |X .

It is easy to see that the assumptions (2), (3), (15) and (16) are fulfilled for long-range
perturbations of the Euclidean metric on Rn, n ≥ 2. More precisely, let O ⊂ Rn be a bounded
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domain with a C∞-smooth boundary and a connected complement Ω = Rn \ O. Let g be a
Riemannian metric in Ω of the form

g =
n∑

i,j=1

gij(x)dxidxj , gij(x) ∈ C∞(Ω),

satisfying
|∂α

x (gij(x) − δij)| ≤ Cα〈x〉−γ0−|α|, (19)

for every multi-index α, with constants Cα, γ0 > 0, where 〈x〉 := (1 + |x|2)1/2 and δij denotes
the Kronecker symbol. It follows from (19) that outside a sufficiently big compact there exists a
global smooth change of variables, (r, θ) = (r(x), θ(x)), r ∈ [r0,+∞), r0 � 1, θ ∈ S = {y ∈ Rn :
|y| = 1}, which transforms the metric g in the form dr2+σ(r). Therefore, (Ω, g) is isometric to a
Riemannian manifold of the class described above, and (17) and (18) hold with δ = min{1, γ0},
provided the metric g is nontrapping.

In the case when gij = δij for |x| ≥ ρ0 with some ρ0 � 1, and the metric g is nontrapping, a
better estimate than (18) is known to hold true with ϕ ≡ 1. In this case, Vainberg [5], [6] showed
that the generalized Huyghens principle implies (18) with a rate of decay O

(
e−ct

)
, c > 0, if n ≥ 3

is odd, and O
(
t−2n

)
if n ≥ 4 is even. The fact that the metric coincides with the Euclidean

one outside some compact plays an important role in Vainberg’s method. In particular, this
implies that the cutoff resolvent extends analytically to some strip through the real axis. This
approach, however, does not work anymore in the setting described above, and it does not allow
to get estimates like (11) and (17).

To prove Theorem 1 we make use of some ideas developed in [1], [8], where uniform high
frequency resolvent estimates have been obtained without assuming (4). The assumption (4),
however, allows to get much better estimates than those proved in the above papers.

Given any domain M0 ⊂ M , equipe the Sobolev space H1(M0, dVolg) with the semi-classical
norm defined by

‖u‖2
H1(M0,dVolg) := ‖u‖2

L2(M0,dVolg) + ‖λ−1∇gu‖2
L2(M0,dVolg),

where λ � 1. The estimate (6) follows from combining the following two estimates

Proposition 6. Assume (4) fulfilled. Then, given any u ∈ D(G), the following estimate
holds:

‖u‖H1(M\Xr0+1,dVolg) ≤ Cλ−1‖(∆g − λ2 + iε)u‖L2(M\Xr0+1,dVolg)

+C‖u‖H1(Xr0+1/2\Xr0+1,dVolg), (20)

for λ ≥ λ0, 0 < ε ≤ 1, with constants C, λ0 > 0 independent of λ and ε.

Proposition 7. Let u ∈ H2(Xa, dVolg), a > r0, be such that

rs(∆g − λ2 + iε)u ∈ L2(Xa, dVolg)

for 1/2 < s ≤ (1 + δ0)/2, 0 < ε ≤ 1. Then, for every 0 < γ � 1 there exist constants
C1, C2, λ0 > 0 (which may depend on γ but are independent of λ and ε) so that for λ ≥ λ0,
∀a1 > a, we have

‖r−su‖2
H1(Xa1

,dVolg) ≤ C1λ
−2‖rs(∆g − λ2 + iε)u‖2

L2(Xa,dVolg)
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−C2λ
−1Im 〈∂ru, u〉L2(∂Xa) + γ‖u‖2

H1(Xa\Xa1
,dVolg). (21)

The estimate (11) follows from combining the following estimates

Proposition 8. a) The estimate (6) implies, ∀s > 1/2,

∫ ∞

0
Es(τ)dτ ≤ CẼ−s(0). (22)

b) The estimates (13) and (14) imply, for t ≥ 1,

∫ ∞

t
Es(τ)dτ ≤ Ct−2m−2µẼ−s(0). (23)

Lemma 9. For ∀s > 1/2, t ≥ 1, we have

Es−1/2(t) ≤ C

∫ ∞

t
Es(τ)dτ, (24)

with a constant C > 0 independent of t.

References

[1] F. Cardoso and G. Vodev, Uniform estimates of the resolvent of the Laplace-Beltrami
operator on infinite volume Riemannian manifolds. II, Ann. H. Poincaré 3 (2002), 673-691.

[2] F. Cardoso and G. Vodev, High frequency resolvent estimates and energy decay of solu-
tions to the wave equation, Canadian Bull. Math., to appear.
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