@article{SEDP_2002-2003____A15_0, author = {Ye, Dong}, title = {Prescription de la forme volume}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:15}, pages = {1--8}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, zbl = {1063.35057}, mrnumber = {2030710}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2002-2003____A15_0/} }
TY - JOUR AU - Ye, Dong TI - Prescription de la forme volume JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:15 PY - 2002-2003 SP - 1 EP - 8 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2002-2003____A15_0/ LA - fr ID - SEDP_2002-2003____A15_0 ER -
%0 Journal Article %A Ye, Dong %T Prescription de la forme volume %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:15 %D 2002-2003 %P 1-8 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/item/SEDP_2002-2003____A15_0/ %G fr %F SEDP_2002-2003____A15_0
Ye, Dong. Prescription de la forme volume. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 15, 8 p. http://archive.numdam.org/item/SEDP_2002-2003____A15_0/
[A] Ambrosio L., Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing 2002), III, 131–140, Higher Ed. Press, Beijing, (2002). | MR | Zbl
[ASV] Avinyó A., Solà-Morales J. et Valèncis M., On maps with given jacobians involving the heat equation, prépublication (2000). | Zbl
[BB] Bourgain, J. et Brezis H., On the equation div and application to control of phases, J. Amer. Math. Soc. 16(2), 393–426 (2003). | MR | Zbl
[BK] Burago D. et Kleiner B., Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8, 273-282 (1998). | MR | Zbl
[D] Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, (1989). | MR | Zbl
[DM] Dacorogna B. et Moser J., On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Nonlinéaire 7, 1-26 (1990). | Numdam | MR | Zbl
[Mc] McMullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8, 304-314 (1998). | MR | Zbl
[Mo] Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, 286-294 (1965). | MR | Zbl
[Mu] Müller S., Higher integrability of determinants and weak convergence in , J. Reine Angew Math. 412, 20-34 (1990). | MR | Zbl
[OU] Oxtoby J. et Ulam S., Mesure-preserving homeomorphisms and metrical transitivity, Ann. Math. 42, 874-920 (1941). | MR | Zbl
[RY] Rivière T. et Ye D., Resolutions of the jacobian determinant equation, Nonlinear Diff. Equa. and Appl., 3, 323-369 (1996). | MR | Zbl
[Y] Ye D., Prescribing the Jacobian determinant in Sobolev spaces, Ann. IHP Analyse Nonlinéaire, 3, 275-296 (1994). | Numdam | MR | Zbl