Prescription de la forme volume
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 15, 8 p.
Ye, Dong 1

1 Département de Mathématiques, site Saint-Martin, Université de Cergy-Pontoise, BP 222, 95302 Cergy-Pontoise Cedex, France
@article{SEDP_2002-2003____A15_0,
     author = {Ye, Dong},
     title = {Prescription de la forme volume},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:15},
     pages = {1--8},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2002-2003},
     zbl = {1063.35057},
     mrnumber = {2030710},
     language = {fr},
     url = {http://archive.numdam.org/item/SEDP_2002-2003____A15_0/}
}
TY  - JOUR
AU  - Ye, Dong
TI  - Prescription de la forme volume
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:15
PY  - 2002-2003
SP  - 1
EP  - 8
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/item/SEDP_2002-2003____A15_0/
LA  - fr
ID  - SEDP_2002-2003____A15_0
ER  - 
%0 Journal Article
%A Ye, Dong
%T Prescription de la forme volume
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:15
%D 2002-2003
%P 1-8
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/item/SEDP_2002-2003____A15_0/
%G fr
%F SEDP_2002-2003____A15_0
Ye, Dong. Prescription de la forme volume. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 15, 8 p. http://archive.numdam.org/item/SEDP_2002-2003____A15_0/

[A] Ambrosio L., Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing 2002), III, 131–140, Higher Ed. Press, Beijing, (2002). | MR | Zbl

[ASV] Avinyó A., Solà-Morales J. et Valèncis M., On maps with given jacobians involving the heat equation, prépublication (2000). | Zbl

[BB] Bourgain, J. et Brezis H., On the equation div Y=f and application to control of phases, J. Amer. Math. Soc. 16(2), 393–426 (2003). | MR | Zbl

[BK] Burago D. et Kleiner B., Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps, Geom. Funct. Anal. 8, 273-282 (1998). | MR | Zbl

[D] Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, (1989). | MR | Zbl

[DM] Dacorogna B. et Moser J., On a partial differential equation involving the Jacobian determinant, Ann. I.H.P. Analyse Nonlinéaire 7, 1-26 (1990). | Numdam | MR | Zbl

[Mc] McMullen C.T., Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8, 304-314 (1998). | MR | Zbl

[Mo] Moser J., On the volume elements on a manifold, Trans. Amer. Math. Soc. 120, 286-294 (1965). | MR | Zbl

[Mu] Müller S., Higher integrability of determinants and weak convergence in L 1 , J. Reine Angew Math. 412, 20-34 (1990). | MR | Zbl

[OU] Oxtoby J. et Ulam S., Mesure-preserving homeomorphisms and metrical transitivity, Ann. Math. 42, 874-920 (1941). | MR | Zbl

[RY] Rivière T. et Ye D., Resolutions of the jacobian determinant equation, Nonlinear Diff. Equa. and Appl., 3, 323-369 (1996). | MR | Zbl

[Y] Ye D., Prescribing the Jacobian determinant in Sobolev spaces, Ann. IHP Analyse Nonlinéaire, 3, 275-296 (1994). | Numdam | MR | Zbl