@article{SEDP_2002-2003____A20_0, author = {Auscher, Pascal}, title = {Au-del\`a des op\'erateurs de {Calder\'on-Zygmund~~:} avanc\'ees r\'ecentes sur la th\'eorie $L^{p}$}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:20}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2002-2003}, mrnumber = {2030715}, zbl = {1080.42010}, language = {fr}, url = {http://archive.numdam.org/item/SEDP_2002-2003____A20_0/} }
TY - JOUR AU - Auscher, Pascal TI - Au-delà des opérateurs de Calderón-Zygmund : avancées récentes sur la théorie $L^{p}$ JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:20 PY - 2002-2003 DA - 2002-2003/// PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/item/SEDP_2002-2003____A20_0/ UR - https://www.ams.org/mathscinet-getitem?mr=2030715 UR - https://zbmath.org/?q=an%3A1080.42010 LA - fr ID - SEDP_2002-2003____A20_0 ER -
Auscher, Pascal. Au-delà des opérateurs de Calderón-Zygmund : avancées récentes sur la théorie $L^{p}$. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2002-2003), Exposé no. 20, 21 p. http://archive.numdam.org/item/SEDP_2002-2003____A20_0/
[Al] Alexopoulos G., An application of homogenization theory to harmonic analysis : Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Can. J. Math., 44, 4, 691-727, 1992. | MR 1178564 | Zbl 0792.22005
[A] Auscher P., On necessary and sufficient conditions for -estimates of Riesz transforms associated to elliptic operators on : a survey, en préparation.
[ACDH] Auscher P., Coulhon T., Duong X.T. & Hofmann S., Riesz transform on manifolds and heat kernel regularity, en préparation. | Numdam | Zbl 1086.58013
[AHLMcT] Auscher P., Hofmann S., Lacey M., MIntosh A. & Tchamitchian Ph.. The solution of the Kato square root problem for second order elliptic operators on , Ann. Math. (2) 156 (2002) 633–654. | MR 1933726 | Zbl 01851146
[AT1] Auscher P. & Tchamitchian P., Square root problem for divergence operators and related topics, Astérisque, 249, 1998. | MR 1651262 | Zbl 0909.35001
[AT2] Auscher, P. & Tchamitchian Ph., Square roots of elliptic second order divergence operators on strongly Lipschitz domains : theory, à paraître dans Journal d’Analyse Mathématique.
[B] Bakry D., Etude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, in Séminaire de Probabilités XXI, Springer L.N. n 1247, 137-172, 1987. | Numdam | MR 941980 | Zbl 0629.58018
[BK1] Blunck S. & Kunstmann P., Calderón-Zygmund theory for non-integral operators and the functional calculus, Rev. Mat. Iberoamericana, to appear. | MR 2053568 | Zbl 1057.42010
[BK2] Blunck S. & Kunstmann P., Weak type estimates for Riesz transforms, preprint. | MR 2054523 | Zbl 02133474
[C] Calderón, A. P., Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the I.C.M. Helsinki 1978 Acad. Sci. Fennica, Helsinki 1980, 85-96. | MR 562599 | Zbl 0429.35077
[CW] Coifman R. & Weiss G., Extensions of Hardy spaces and their use in Analysis, Bull. A.M.S. 83, (1977), 569–645. | MR 447954 | Zbl 0358.30023
[CD1] Coulhon T. & Duong X.T., Riesz transforms for , T.A.M.S., 351, 1151-1169, 1999. | MR 1458299 | Zbl 0973.58018
[CD2] Coulhon T. & Duong X.T., Maximal Regularity and kernel bounds : observations on a theorem by Hieber and Prüss, Adv. in Diff. Eqs 5, 343-368, 2000. | MR 1734546 | Zbl 1001.34046
[DJ] David G. & Journé, J.-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann. Math., 120, 371–398, 1984. | MR 763911 | Zbl 0567.47025
[DMc] Duong X.T. & McIntosh A., Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 15, 2, 233-265, 1999. | MR 1715407 | Zbl 0980.42007
[DMc1] Duong X.T. & McIntosh A., The boundedness of Riesz transforms associated with divergence form operators, in Workshop on Analysis and Applications, Brisbane, 1997, Proceedings of the Centre for Mathematical Analysis, ANU Canberra 37 (1999), 15-25.
[DR] Duong X.T. & Robinson D., Semigroup kernels, Poisson bounds and holomorphic functional calculus, J. Funct. Anal., 142, 1, 89-128, 1996. | MR 1419418 | Zbl 0932.47013
[FS] Fefferman C. & Stein E., spaces in several variables, Acta Math., 129, 137-193, 1972. | MR 447953 | Zbl 0257.46078
[G] Grigor’yan A., The heat equation on non-compact Riemannian manifolds, in Russian : Matem. Sbornik, 182, 1, 55-87, 1991 ; English translation : Math. USSR Sb., 72, 1, 47-77, 1992. | Zbl 0776.58035
[G1] Grigor’yan A., Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom., 45, 33-52, 1997. | Zbl 0865.58042
[He] Hebisch, W., A multiplier theorem for Schrödinger operators, Coll. Math. 60/61, 659-664, 1990. | MR 1096404 | Zbl 0779.35025
[HP] Hieber M. & Prüss, J., Heat kernels and maximal estimates for parabolic evolution equations, C.P.D.E. 2, 559-568, 2000. | Zbl 0886.35030
[HM] Hofmann S. & Martell J.M., bounds for Riesz transforms and square roots associated to second order elliptic operators, preprint. | MR 2006497 | Zbl 1074.35031
[Ho] Hörmander L. Estimates for translation invariant operators in spaces, Acta Math. 104, 93-140, 1960. | MR 121655 | Zbl 0093.11402
[Li] Li Hong Quan, La transformation de Riesz sur les variétés coniques, J. Funct. Anal., 168, 145-238, 1999. | MR 1717835 | Zbl 0937.43004
[Lo1] Lohoué N., Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive, J. Funct. Anal., 61, 2, 164-201, 1985. | MR 786621 | Zbl 0605.58051
[Lo2] Lohoué N., Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables, C.R.A.S Paris, 306, I, 327-330, 1988. | MR 934611 | Zbl 0661.43002
[M] Martell J. M., Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, preprint. | MR 2033231
[SC1] Saloff-Coste L., A note on Poincaré, Sobolev and Harnack inequalities, Duke J. Math., 65, I.R.M.N., 27-38, 1992. | MR 1150597 | Zbl 0769.58054
[SC2] Saloff-Coste L., Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat., 28, 315-331, 1990. | MR 1084020 | Zbl 0715.43009
[St1] Stein E.M., Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton U.P., 1970. | MR 252961 | Zbl 0193.10502
[St2] Stein E.M., Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton U.P., 1993. | MR 1232192 | Zbl 0821.42001
[S] Strichartz R., Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., 52, 48-79, 1983. | MR 705991 | Zbl 0515.58037
[V] Verdera J., The fall of the doubling condition in harmonic analysis, à paraître dans Publicacions Matematiques.
[W] Weis L., A new approach to maximal regularity, Proc. of the 6th International Conference on evolution equations and their applications in physical and life sciences in Bad Herrenbald 1998, G. Lumer & L weis eds, Marcel Dekker 2000. | MR 1816431 | Zbl 0981.35030