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1 Introduction

Let us begin by considering the finite dimensional case. Let us consider a func-
tion F from RN with generic element b (N will become infinite later) into Rd

with generic element y. We suppose that F is smooth with bounded derivatives
of all orders. We say that the function F is a submersion in the strong
sense, if its derivative dF (b) is in all b a linear surjection. We can express this
fact by introducing the Gram matrix dF (b)tdF (b) which is a symmetric matrix
in Rd and saying that the Gram matrix is strictly positive in all b. If we sup-
pose that our space RN is endowed with a non degenerate Gaussian law (with
in order to simplify a covariance matrix equals to the identity), it is almost
equivalent to say that E[(dF tdF )−p] < ∞ for all integers p, if we can control
the behaviour at the infinity of the Gram matrix. In this part, we will skip
the problem to control the expressions at the infinity, which can be handled
by introducing some mollifers. The introduction of such mollifers (in infinite
dimension) is the purpose of this work.

Let us consider the law of the random variable F : its law has a smooth
density. We can see that by using two following points of view which can be ”a
priori” different:

-)The first one is Bismut’s point of view ([Bi]). Since F is a submersion,
F−1(y) is a submanifold of RN of codimension d, and by using the implicit
function theorem, we get an ”explicit” expression for the density p(y) of F :

(1.1) p(y) =

∫

F−1(y)

√
2π

−N
exp[−‖b‖2/2]

√

detdF (b)tdF (b)
−1

dσy(b)

dσy(b) is the Riemannian volume element over F−1(y).
-)The second one is Malliavin’s point of view ([Ma]). In order to show

that the law of F has a smooth density, it is enough to obtain integration by
parts formulae. More precisely, let (α) be a multi-index over Rd. There exists
a universal polynomial in the derivatives of F and in det(dF tdF )−1 (where
det(dF tdF )−1 appears with an exponent which increases when the length of
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(α) increases) such that for all test functions f

(1.2) E[f (α)(F )] = E[L(α)f(F )]

Let us remark in order to request more and more regularity on the law of F ,
we need multi-indices of length more and more big such that we request the
hypothesis that E[(dF tdF )−p] < ∞ for bigger and bigger integers p. But this
point of view is in principle more general than the first point of view because it
allows to treat the case when F−1(y) has some singularities.

We can see that when the target space is R and the source is RN with a
big N . We consider as random variable a non degenerate quadratic form Q.
E[(dQtdQ)−p] is finite for bigger and bigger p when N → ∞, which shows that
the law of Q is more and more regular when N → ∞.

We are concerned in this part by an infinite dimensional generalization of
this remark, and we will treat in the third part the problem of the estimation
of the derivative, which can be handled, as we will see, by using some mollifers.
That is, we take N = ∞, and we consider the canonical space C([0, 1]; Rm) of
continuous paths w. (B0 = 0) in Rm endowed with the uniform topology and the
Brownian measure as non degenerate Gaussian measure. There is an underlying
Hilbert space, the Cameron-Martin space, H , which is constituted of integrals
∫ .

0
hsds endowed with the Hilbert structure

∫ 1

0
|hs|2ds = ‖h‖2. Formally, the

Brownian measure is the measure over H C exp[−‖h‖2/2]dD(h) where dD(h) is
the formal Lebesgue measure on H . Unfortunately, this leads to some problems
of measure theory, and this measure lives in fact over C([0, 1]; Rm) instead of
H , or on the 1/2− ε path.

Malliavin’s point of view works when we consider C([0, 1]; Rm). Malliavin
established a differential Calculus, where there is no Sobolev imbedding ([Ma]):
it is possible to find functionals which belong in infinite dimension to all Sobolev
spaces and which are only almost surely defined, unlike the case of the finite
dimension. The big rupture of Malliavin Calculus with respect of its preliminary
versions (see works of Hida, Albeverio, Fomin, Elworthy..) is namely to complete
the differential operations on the Wiener space in all the Lp. Since there is
no Sobolev imbedding in infinite dimension, it is possible to find functionals
which are only almost surely defined, although they belong to all the Sobolev
spaces. The stochastic gradient DF of F is random application from H into the
target space. We get by this procedure the notion of first order Sobolev norm
W1,p of functionals such that DF belongs in Lp. We can iterate the notion
of stochastic derivative, and we get the notion of higher Sobolev spaces Wk,p.
We can interpret the concept of Gram matrix in this situation, and we get the
Malliavin matrix DF tDF , which is a random matrix. Malliavin’s theorem is
the following: if F belongs to all the Sobolev spaces and if the inverse of its
Malliavin matrix belong to all the Lp, the law of F has a smooth density with
respect to the Lebesgue measure over Rd.

A functional may belong to all the Sobolev spaces and may be only surely
defined. The main example of Malliavin for that is the following: we consider
a finite dimensional manifold M (not necessarily compact), and some smooth

XXIV–2



vector fields Xi, i = 0, .., m with compact supports in M . Malliavin studies
the case of the stochastic differential equation in Stratonovitch sense:

(1.3) dxt(x) = X0(xt(x))dt +
∑

i>0

Xi(xt(x)) ◦ dwi
t

starting from x. Since the vector fields have compact supports, we can perturb
dwi

t into dwi
t + λhi

tdt, and we get the solution xt(λ) of the deduced stochastic
differential equation from (2.3). x1(λ) is almost surely smooth in λ, and we can
take its derivative in λ = 0, by doing the formal computations as if it were an
ordinary differential equation instead of a stochastic differential equation. The
computations are only almost surely true. This shows that x1(x) belongs to
all the Sobolev spaces of Malliavin Calculus: we have some small modifications
which are due to the fact we work over M instead of Rd (We refer to [Me] for
this statement). In order to study the regularity of the law of x1(x), it is enough
to study the invertibility in all the Lp of the Malliavin matrix of x1(x). The
inverse of the Malliavin matrix belongs to all the Lp if the weak Hoermander
hypothesis is checked in x.. We refer to [N] for a simple proof of this result.

Let us look now at Bismut’s point of view. Instead of considering the stochas-
tic differential equation in Stratonovitch sense (1.3), we consider the ordinary
differential equation starting from x:

(1.4) dxt(h) = X0(xt(h))dt +
∑

i>0

Xi(xt(h))hi
tdt

Since the vector fields have compact support, h → x1(h) is Frechet smooth from
H into M . We can look at if it was a Frechet-submersion in h. In particular, it
is a submersion in h = 0 if the vector fields Xi, i 6= 0 spann the tangent space
at x (Elliptic situation).

The importance of the fact that in (1.4) the vector fields have compact
support can be seen as follows: if they have no compact supports, the solution
xt(h) of (1.4) can go to infinity with an exit time τ(h) which is not differentiable.
In (1.4), if the vector fields have no compact supports, the exit time τ(x) of the
diffusion of the manifold does not belong in general to the Sobolev spaces of
Malliavin Calculus.

The goal of this communication is to remove the boundedness or compactness
assumptions in Malliavin Calculus, by using some suitable mollifiers. We get
a generalization of the positivity theorem of Ben Arous-Léandre for a compact
manifold to a general manifold. This allows us to extend to the non-bounded
case some short time asymptotics for hypoelliptic heat-kernels by Malliavin Cal-
culus before in the compact case. We refer to the surveys of Léandre ([L4], [L6]),
of Kusuoka ([Ku]) and Watanabe ([Wa]) for applications of Malliavin Calculus
to heat kernels. Let us remark than the pioneering works about probabilistic
methods for heat kernels are the works of Molchanov ([Mo]) in the Riemannian
case and of Gaveau in the hypoelliptic case ([Ga]). This communication is a
shorter version of [L11] and [L13].
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2 A mollifier on the Wiener space

Let us introduce the solution of the stochastic differential equation in Stratonovitch
sense, where wi

t are some independent Brownian motions:

(2.1) dxt(x) = X0(xt(x))dt +
∑

i>0

Xi(xt(x)) ◦ dwi
t

starting from x, which represents the semi-group associated to the Hoermander’s
type operator L = X0 +1/2

∑

i>0 X2
i . Under weak Hoermander’s hypothesis in

x, the semi-group exp[tL] is represented by an heat-kernel pt(x, y) with respect
of the Riemannian measure of the Riemannian manifold. Let us introduce the
exit time τ of the manifold. If f is a smooth function on M , we have classically
(See [I.W], [Nu]):

(2.2)

∫

p1(x, y)f(y)dy = E[f(x1(x))1τ>1]

In general, we cannot apply Malliavin Calculus to the diffusion xt(x). In order
to be able to apply Malliavin Calculus, we introduce the mollifiers of Jones-
Léandre ([J.L]) and Léandre ([L3]). We consider a smooth function d from M
into R+, equal to 0 only in x and which tends to ∞ when y tends to infinity, the
one compactification point of M . We consider a smooth function over ] − k, k[
(k ∈ R+), equals to 1 over [−k/2, k/2] and which behaves as 1

(k−y)+r
when

y → k−. Outside ] − k, k[, this function, called gk(y) is equals to ∞. We
suppose that gk ≥ 1.

We choose a big integer r. We choose a smooth function from [1,∞[ into
[0, 1], with compact support, equals to 1 in 1 and which decreases.

The mollifier functional of Jones-Léandre ([J.L]) is

(2.3) Fk = h(

∫ 1

0

gk(d(xs(x)))ds)

Lemma 2.1: Fk belongs to all the Sobolev spaces in the sense of Malliavin
Calculus if r is big enough, and is equal to 1 if sups d(xs(x)) ≤ k/2, is smaller
to 1 if sups d(xs(x)) > k/2 and is equal to 0 almost surely if sups d(xs(x)) ≥ k.
Moreover, Fk ≥ 0.

Proof of the lemma: the support property of Fk comes from the fact that
the paths of the diffusion s → xs(x) are in fact almost surely Hoelder with an
Hoelder exponent strictly smaller than 1/2, instead of being only continuous.

Let us show that Fk belongs to all the Sobolev spaces.
Let us introduce some smooth vector fields Xk

i which are equal to Xi for
d ≤ k and which are equal to 0 if d ≥ k + 1. We consider the stochastic
differential equation in Stratonovitch sense starting from x:

(2.4) dxk
t (x) = Xk

0 (xk
t (x))dt +

∑

i>0

Xk
i (xk

t (x)) ◦ dwi
t
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Since we consider a Stratonovitch equation, its solution is the limit in all the
Lp of the solution of the random ordinary differential equation got when we
replace the Stratonovich differential dwi

t by the random ordinary differential
of the polygonal approximation of the leading Brownian motion. It is called
Wong-Zakai approximation ([I.W]). We put

(2.5) F̃k = h(

∫ 1

0

gk(d(xk
s (x)))ds)

We get clearly F̃k = Fk. The interest to use the diffusion xk
t (x) instead of the

initial diffusion is that we can apply Malliavin Calculus to it (See [J.L], [L9]).
♦

3 Posivity theorem for a general manifold

We get by using the mollifier of the previous section a generalization of the
positivity theorem of Ben-Arous-Léandre. An abstract version in the bounded
case was given by Aida-Kusuoka-Stroock ([A.K.S]). Léandre [L6] has given a
generalization of this theorem for a jump process. Bally and Pardoux ([B.P])
have given an extension of this positivity theorem to a stochastic heat equation.
A.Millet and M. Sanz-Solé ([M.S]) have given a generalization of this theorem
to the case of a stochastic wave equation. Fournier ([F]) has generalized the
theorem of Léandre to the case of a non-linear jump process associated to a
Boltzmann equation. Léandre ([L12]) has studied the case of a delay equation
on a manifold. All these works were done under the traditional boundedness
assumptions of Malliavin Calculus.

The following theorem avoids this assumption. We suppose that weak Ho-
ermander’s hypothesis is checked in all points x: the Lie ideal spanned by the
vector fields Xi, i 6= 0 in the Lie algebra spanned by all the vector fields Xi is
equal in x to the tangent space in x of the manifold M .

Theorem 3.1: p1(x, y) > 0 if and only there exists an h such that x0(h) = x,
x1(h) = y and h′ → x1(h

′) is a submersion in h.
Proof: We introduce the auxiliary measure µk:

(3.1) µk : f → E[Fkf(x1(x))]

To the measure µk, we can apply Malliavin Calculus. Namely, µk[f ] = E[F̃kf(xk
1(x))].

In particular µk has a smaller density qk smaller than p1(x, y). In particular, if
there exists a h such that x1(h) = y and h′ → x1(h

′) is a submersion in h, we
can find an enough big k such that qk(y) > 0, by the positivity theorem of Ben
Arous and Léandre ([BA.L]) in the compact case with the extra-condition that
F̃k has to be strictly positive. This shows that the condition is sufficient.

In order to show that the condition is necessary, we remark that if p1(x, y) >
0 in y, qk(y) is still strictly positive for k enough big, because for k big enough,
for ε small

(3.2) |E[(1τ>1 − Fk)f(x1(x))]| ≤ ε‖f‖∞
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where ‖f‖∞ denotes the uniform norm of f .
Therefore, it is enough to apply Ben Arous-Léandre result in the other sense.

♦
Remark: Let us suppose that Hoermander’s condition is checked only in x.

We can suppose that h is decreasing and that gk decreases to 1, such that Fk

increases to 1τ>1. By Malliavin Calculus, µk has a density qk, which increases.
Let us consider the function f = 1A for a set A of measure 0 for the Lebesgue
measure over M . We have:

(3.3) µk[f ] = 0

But

(3.4) µk[f ] = E[Fkf(x1(x))] = 0

anf Fkf(x1(x)) increases and tends to 1τ>1f(x1(x)), which is in L1. We deduce
that

(3.5) E[1τ>1f(x1(x))] = 0

This means that the the law of x1(x) has a density without to suppose that
Hoermander’s hypothesis is checked in all points.

4 The main localizing lemma

Let M be a Riemannian manifold with compactification point ∞. Let π be
a probability measure on M smoothly equivalent to the Riemannian measure.
Let Xi i = 0, .., m smooth vector fields over M . Let us suppose that X0 is
divergence free, the divergence being computed for π (Hypothesis H(0)). Let
L be the operator:

(4.1) L = X0 + 1/2
∑

i>0

X∗
i Xi

It can be written under Hoermander’s form (see [H])

(4.2) L = X̃0 + 1/2
∑

i>0

X2
i

Let E be the Dirichlet form associated to the symmetric operator
∑

X∗
i Xi.

Suppose ( Hypothesis H(1)) the following Nash inequality:

(4.3) ‖f‖2
L2(π) ≤ C(E(f, f)N/N+2)

for some N for all f of L1(π) norm equal to 1. Let us consider the Hilbert space
H of L2 functions hi

t from [0,1] into Rm. We consider the horizontal curve:

(4.4) dxt(h, x) =
∑

i>0

Xi(xt(h, x))hi
tdt ; x0(h, x) = x
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We suppose (Hypothesis H(2)) that the solution of (4.4) does not blow up
for all x in M and all h in H .

To an horizontal curve x.(h, x), h ∈ H we associate its energy ‖h‖2 =
∑

∫ 1

0
|hi

t|2dt. We define

(4.5) d2(x, y) = inf
x1(h,x)=y

‖h‖2

We suppose (Hypothesis H(3)), that the Carnot-Caratheodory distance (x, y) →
d(x, y) is continuous, finite and when one of the two points x or y tends to the
compactification point of M , that d(x, y) → ∞.

In the case where the manifold is compact, the strong Hoermander hypoth-
esis ( Hypothesis H(4)) in all x implies Hypothesis H(1), H(2) and H(3). We
consider the stochastic differential equation in Stratonovitch sense associated to
the semi- group exp[−tL]

(4.6) dxt(x) = X̃0(xt(x))dt +
∑

i>0

Xi(xt(x)) ◦ dwi
t ; x0(x) = x

where wi
t are independent flat Brownian motions (See [I.W]). The law of xt(x)

has the density pt(x, y) with respect to π. Let τR(x) be the exit time of the ball
B(x, R) of radius R and center x for the Carnot-Carathéodory distance.

We get:
Lemma 4.1: Under the previous assumptions, the measure µt,R : f →

E[1τr(x)<tf(xt(x))] has a density pR,t(x, y) with respect to π bounded by exp[−CR/t]
for t ≤ 1 when CR → ∞ where R → ∞. This estimate is uniform in all compact
of M × M .

Proof: We remark that, by Hoelder inequality and large deviations esti-
mates, that

(4.7) µt,R[f ] ≤ C exp[−CR/t](

∫

M

f(y)2pt(x, y)dπ(y))1/2

Moreover the density pt(x, y) of the diffusion xt(x) pt(x, y) with respect of dπ(y)
is smaller than t−K when t → 0 (See [L10]). We conclude by using Kolmogorov
lemma and the time reversed process.
♦

5 Varadhan estimates without boundedness as-

sumption

Let us introduce the solution of the stochastic differential equation in Stratonovitch
sense, where wi

t are some independent Brownian motions:

(5.1) dxt(x) = X̃0(xt(x))dt +
∑

i>0

Xi(xt(x)) ◦ dwi
t
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starting from x. Let us introduce the exit time τ of the manifold. If f is a
smooth function on M , we have classically (See [I.W], [Nu]):

(5.2)

∫

pt(x, y)f(y)dy = E[f(x1(x))1τ>t]

We get by using the method of the proof of [L1], where we have replaced the
role of Malliavin Calculus by the Nash inequality (See [L10])in order to get the
rough estimate of pt(x, y) in Ct−K :

Theorem 5.1: Uniformly over all compact of M

(5.3) limt→02t log pt(x, y) ≤ −d2(x, y)

In the sequel of this paper, we will do the following hypothesis (Hypothesis
H(4)): in the starting point of the diffusion x, the Lie algebra spanned by the
Xi, i > 0 is equal to Tx(M) (Strong Hoermander hypothesis in x).

In general, we cannot apply Malliavin Calculus to the diffusion xt(x). In
order to be able to apply Malliavin Calculus, we introduce a mollifier Fk of the
same type of mollifiers of the part 2.

We intoduce the auxiliary measure µk:

(5.4) µk : f → E[Fkf(x1(x))]

To the measure µk, we can apply Malliavin Calculus. Namely, µk[f ] = E[F̃kf(xk
1(x))].

The introduction of this auxiliary measure and the Lemma 4.1 allow us to
state the following theorem:

Theorem 5.2: When t → 0 uniformly in y over all compact , we have the
following inequality:

(5.5) limt→02t log pt(x, y) ≥ −d2(x, y)

Proof: We choose k big enough in (5.4). By the technics of [L2] and [L3],
the density qk

t (x, y) of µk satisfy to (5.5) over the chosen compact in y of M .
Moreover, by Lemma 4.1, it differs of pt(x, y) by exp[−C/t] where C is much
more bigger than d2(x, y) where y describes our compact neighborhood.
♦

6 Asymptotic expansion without boundedness

assumption

Let us recall some statements of [L3]. A bicaracteristic issued of x and of cotan-
gent vector q is the solution of the differential equation on T ∗(M):

(6.1)
dγt(x, q) =

∑

i>0 < qt, Xi(γt(x, q)) > Xi(γt(x, q))dt
dqt = −∑

i>0 < qt, Xi(γt(x, q)) >t ∂
∂xXi(γt(x, q))qtdt
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In order to give a rigorous meaning to this equation, we have imbedded M into
Rr such that T ∗(M) is embedded into Rr ×Rr. We will say that x and y does
not belong to the cut-locus of the Carnot-Carathéodory metric if the following
conditions are checked:

i) There exists a unique h ∈ H such that d2(x, y) = ‖h‖2 and such that
x1(h, x) = y.

ii) t → xt(h, x) is a bicaracteristic γt(x, q).
iii) q′ → γ1(x, q′) is a diffeomorphism of a neighborhood of q in T ∗

x (M) into
a neighborhood of y.

Under these conditions, we get:
Theorem 6.1:: If x and y do not belong to the cut-locus of the Carnot-

Carathéodory metric, we have, when t → 0:

(6.2) pt(x, y) = exp[−d2(x, y)/2t]
√

t
−d

(

N
∑

i=0

ci(x, y)
√

t
i
+ O(

√
t
N

))

where c0(x, y) > 0 and where d is the dimension of M .
Proof: We consider k big enough in (5.4). The density of qk

t (x, y) is equal
to pt(x, y) modulo exp[−C/t] for a very big C. We apply the techniques of [L3]
(see [BA1] too) in order to show by using Malliavin Calculus that qk

t (x, y) has
the asymptotic expansion (6.3).
♦

Remark: We can apply this localization technic to the case where the
two points are joined by a finite dimensional manifold of bicaracteristics (See
[T.Wa]).

Let us suppose from now that X0(x) = 0 at the starting point (Hypothesis
H(5)).

Let N(x) be the grad of the Lie algebra spanned by the Xi, i > 0 and X̃0,
X̃0 alone excluded where we count 2 the weight of X̃0.

We get:
Theorem 6.2:
i)Let us suppose that X0 = 0 identically. Then there exists an asymptotic

expansion

(6.3) pt(x, x) =
√

t
−N(x)

N
∑

i=0

ci(x)
√

t
i
+ O(

√
t
N

)

where t → 0 and where c0(x) > 0.
ii)Let us suppose only H(5). Then the asymptotic expansion (6.3) is still

true, but we don’t know if c0(x) > 0. Otherwise, all the terms of the asymptotic
expansion are 0.

Proof: We consider qk
t (x, x) the density of µk at x. We can apply the tools

of Malliavin Calculus to qk
t (x, x). In particular, it checks (6.3) by the technics of

[BA2], [T] and [L7]. Moreover, qk
t (x, x) differs from pt(x, x) by an exponentially

small term. Therefore i). ii) comes from the same considerations by using the
analoguous result of [BA.L] in the bounded case.
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♦
Remark: Léandre has introduced in [L5] the correct ”semi-distance” asso-

ciated to the hypoelliptic heat-kernel with drift, and had shown that the volume
of the balls in short time associated to it is related to the theoretical integer
N(x).

7 Non exponential decay without boundedness

assumption

We work now over Rd, and we suppose that we are in the situation ii) of Theorem
IV.2 where the asymptotic expansion is trivial.

We assume the following hypothesis (Hypothesis H(6)): there exist two
real numbers strictly positive C and C ′, an integer n and a real strictly positive
constant K such that for all integers r, for all i, 0 ≤ i ≤ d

(7.1) sup
|x−y|≤K

|DrXi(y)| ≤ C ′r!Crn

This hypothesis shows that in some sense, the vector fields belong to some
generalized Gevrey class, such that the heat kernel when t → 0 belongs to a
generalized Gevrey class, which allows us to get an estimate of the decay of the
heat kernel. This hypothesis is checked when the vector fields are polynomial
near the starting point.

We get the following theorem:
Theorem 7.1: There exists a real α0 > 1 such that for all t ≤ 1

(7.2) pt(x, x) ≤ C exp[−| log t|α0 ]

Proof: We choose k enough small. qk
t (x, x) and pt(x, x) differ by a term ex-

ponentially small. We can apply Malliavin Calculus to qk
t (x, x) and the technics

of [F.L] in order to show that

(7.3) qk
t (x, x) ≤ C exp[−| log t|α0 ]

♦
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[L10] Léandre R.: Uniform upper bounds for hypoelliptic kernels with drift. J.
Math. Kyoto. Univ. 34 (1994), 263-271.
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