Explosion en temps fini pour l’équation de Schrödinger non linéaire stochastique surcritique
Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Talk no. 7, 14 p.
@article{SEDP_2002-2003____A7_0,
     author = {de Bouard, Anne and Debussche, Arnaud},
     title = {Explosion en temps fini pour l'\'equation de Schr\"odinger non lin\'eaire stochastique surcritique},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2002-2003},
     note = {talk:7},
     zbl = {1060.60065},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2002-2003____A7_0}
}
de Bouard, Anne; Debussche, Arnaud. Explosion en temps fini pour l’équation de Schrödinger non linéaire stochastique surcritique. Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Talk no. 7, 14 p. http://www.numdam.org/item/SEDP_2002-2003____A7_0/

[1] Bang, O.; Christiansen, P.L.; If, F.; Rasmussen, K.O.; Gaididei, Y.B. Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E 1994, 49, 4627–4636.

[2] Bang, O.; Christiansen, P.L.; If, F.; Rasmussen K.O.; Gaididei, Y.B. White Noise in the Two-dimensional Nonlinear Schrödinger Equation. Appl. Anal. 1995, 57, 3–15. | MR 1382938 | Zbl 0842.35111

[3] Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Encyclopedia of Mathematics and its Applications, Cambridge University Press: Cambridge, England, 1992. | MR 1207136 | Zbl 0761.60052

[4] de Bouard, A.; Debussche, A. A stochastic nonlinear Schrödinger equation with multiplicative noise. Comm. Math. Phys. 1999, 205, 161–181. | MR 1706888 | Zbl 0952.60061

[5] de Bouard, A.; Debussche, A. The stochastic nonlinear Schrödinger equation in H 1 , Stochastic Analysis and Appl. 2003, 21, 97–126. | MR 1954077 | Zbl 1027.60065

[6] de Bouard, A.; Debussche, A. On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation, Prob. Theory and Rel. Fields, 2002, 123, 76-96. | MR 1906438 | Zbl 1008.35074

[7] de Bouard, A.; Debussche, A. Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise, Preprint. | Zbl 1068.35191

[8] Debussche, A.; Di Menza L. Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Phys. D 2002, 162, 131-154. | MR 1886808 | Zbl 0988.35156

[9] Konotop, V.; Vázquez L. Nonlinear random waves; World Scientific Publishing Co., Inc.: River Edge, N.J., 1994. | MR 1425880 | Zbl 1058.76500

[10] Millet, A.; Sanz-Solé, M. A simple proof of the support theorem for diffusion processes, Séminaire de Probabilité XXVIII, J. Azéma et al. ed., LNM 1583, 1994, 36-48. | Numdam | MR 1329099 | Zbl 0807.60073

[11] Sulem, C.; Sulem, P.L. The nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse; Appl. Math. Sciences, Springer Verlag, New York, 1999. | MR 1696311 | Zbl 0928.35157

[12] Ueda, T.; Kath W.L. Dynamics of optical pulses in randomly birefrengent fibers. Physica D 1992, 55, 166–181. | Zbl 0741.35082