Rôle des oscillations quadratiques dans des équations de Schrödinger non linéaire
Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Talk no. 9, 12 p.
@article{SEDP_2002-2003____A9_0,
     author = {Carles, R\'emi and Fermanian--Kammerer, Clotilde and Gallagher, Isabelle},
     title = {R\^ole des oscillations quadratiques dans des \'equations de Schr\"odinger non lin\'eaire},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2002-2003},
     note = {talk:9},
     zbl = {1064.35178},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2002-2003____A9_0}
}
Carles, Rémi; Fermanian–Kammerer, Clotilde; Gallagher, Isabelle. Rôle des oscillations quadratiques dans des équations de Schrödinger non linéaire. Séminaire Équations aux dérivées partielles (Polytechnique) (2002-2003), Talk no. 9, 12 p. http://www.numdam.org/item/SEDP_2002-2003____A9_0/

[1] H. Bahouri et P. Gérard: High frequency approximation of solutions to critical nonlinear wave equations, American Journal of Mathematics, 121, pages 131–175, 1999. | MR 1705001 | Zbl 0919.35089

[2] H. Bahouri et P. Gérard: Concentration effects in critical nonlinear wave equations and scattering theory, Geometrical Optics and Related Topics (F. Colombini and N. Lerner eds), Progress in Nonlinear Differential Equation and Applications, vol. 32, Birkhäuser, Boston, 17–30, 1997. | MR 2033489 | Zbl 0926.35090

[3] R. Carles: Geometric optics with caustic crossing for some nonlinear Schrödinger equations, Indiana Univ. Math. J. 49, pages 475–551, 2000. | MR 1793681 | Zbl 0970.35143

[4] R. Carles, C. Fermanian et I. Gallagher: On the role of quadratic oscillations in nonlinear Schrödinger equations, arXiv:math.AP/0212171. | MR 2003356

[5] T. Cazenave: An introduction to nonlinear Schrödinger equations, Text. Met. Mat., vol. 26, Univ. Fed. Rio de Jan., 1993.

[6] T. Cazenave et F. Weissler: Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147, 75–100, 1992. | MR 1171761 | Zbl 0763.35085

[7] J. Duistermaat: Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math., 27, pages 207–281, 1974. | MR 405513 | Zbl 0285.35010

[8] I. Gallagher: Profile decomposition for the Navier–Stokes equations, Bulletin de la Société Mathématique de France, 129, pages 285–316, 2001. | Numdam | MR 1871299 | Zbl 0987.35120

[9] P. Gérard: Oscillations and concentration effects in semilinear dispersive wave equations, J. Funct. Anal. 141, pages 60–98, 1996. | MR 1414374 | Zbl 0868.35075

[10] P. Gérard: Description du défaut de compacité de l’injection de Sobolev, ESAIM Contrôle Optimal et Calcul des Variations, 3, pages 213–233, 1998 (version électronique: http://www.emath.fr/cocv/).

[11] J.-L. Joly, G. Metivier et J. Rauch: Caustics for dissipative semilinear oscillations, Mem. Amer. Math. Soc. 144, 2000. | MR 1682244 | Zbl 0963.35114

[12] S. Keraani: On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, 175, no. 2, 353–392, 2001. | MR 1855973 | Zbl 1038.35119

[13] F. Merle: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69, no. 2, 427–454, 1993. | MR 1203233 | Zbl 0808.35141

[14] F. Merle et L. Vega: Compactness at blow-up time for L 2 solutions of the critical nonlinear Schrödinger equation in 2D, Internat. Math. Res. Notices, no. 8, 399–425, 1998. | MR 1628235 | Zbl 0913.35126

[15] J. Rauch: Partial Differential Equations, Graduate Texts in Math., vol. 128, Springer-Verlag, New York, 1991. | MR 1223093 | Zbl 0742.35001