Sur le Problème de Conductivité Inverse
Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 13, 15 p.
@article{SEDP_2003-2004____A13_0,
     author = {Ammari, Habib and Kang, Hyeonbae},
     title = {Sur le Probl\`eme de Conductivit\'e Inverse},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2003-2004},
     note = {talk:13},
     mrnumber = {2117045},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2003-2004____A13_0}
}
Ammari, Habib; Kang, Hyeonbae. Sur le Problème de Conductivité Inverse. Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 13, 15 p. http://www.numdam.org/item/SEDP_2003-2004____A13_0/

[1] Alessandrini G., Stable determination of conductivity by boundary measurements, Applicable Analysis 27 (1988) pp. 153–172. | MR 922775 | Zbl 0616.35082

[2] Ammari H., Iakovleva E. et Moskow S., Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal. 34 (2003), 882–900. | MR 1969606 | Zbl 1038.78012

[3] Ammari H. et Kang H., Reconstruction of Small Inclusions from Boundary Measurements, Lecture Notes in Mathematics, Springer-Verlag, à paraître (2004).

[4] Ammari H. et Kang H., High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter, SIAM J. Math. Anal. 34 (2003), 1152–1166. | MR 2001663 | Zbl 1036.35050

[5] —————, Properties of the generalized polarization tensors, Multiscale Modeling and Simulation : A SIAM Interdisciplinary Journal 1 (2003), 335–348. | MR 1990200 | Zbl 1060.35159

[6] Ammari H., Kang H., Kim E. et Lim M., Reconstruction of closely spaced small inclusions, à paraître dans SIAM Journal on Numerical Analysis (2004). | Zbl 1081.35133

[7] Ammari H., Kang H., Nakamura G. et Tanuma K., Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter, J. Elasticity 67 (2002), 97–129. | MR 1985444 | Zbl 1089.74576

[8] Ammari H., Kang H. et Touibi K., Boundary layer techniques for deriving the effective properties of composite materials, à paraître dans Asympt. Anal. (2004). | Zbl 1072.35020

[9] Ammari H. et Khelifi A., Electromagnetic scattering from small dielectric inhomogeneities, J. Math. Pures Appl. 82 (2003), 749–842. | MR 2005296 | Zbl 1033.78006

[10] Ammari H., Kwon O., Seo J.K. et Woo E.J., T-scan electrical impedance imaging system for anomaly detection, à paraître dans SIAM J. Appl. Math. (2004). | MR 2112397 | Zbl 1075.35102

[11] Ammari H., Moskow S. et Vogelius M., Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter, ESAIM : Cont. Opt. Calc. Var. 9 (2003) pp. 49–66. | Numdam | MR 1957090 | Zbl 1075.78010

[12] Ammari H. et Seo J.K., A new algorithm for the reconstruction of conductivity inhomogeneities, Adv. Appl. Math. 30 (2003), 679–705. | MR 1977849 | Zbl 1040.78008

[13] Ammari H. et Uhlmann G., Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J. 53 (2004), 169–183. | MR 2048188 | Zbl 1051.35103

[14] Ammari H., Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of imperfections of small diameter II. The full Maxwell equations, J. Math. Pures Appl. 80 (2001) pp. 769–814. | MR 1860816 | Zbl 1042.78002

[15] Ammari H. et Volkov D., Correction of order three for the expansion of two dimensional electromagnetic fields perturbed by the presence of inhomogeneities of small diameter, J. Comput. Physics 189 (2003), 371–389. | MR 1996052 | Zbl 1023.78003

[16] Beretta E., Francini E. et Vogelius M., Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. 82 (2003), 1277–1301. | MR 2020923 | Zbl 1089.78003

[17] Beretta E., Mukherjee A. et Vogelius M., Asymptotic formuli for steady state voltage potentials in the presence of conductivity imperfections of small area, Zeitschrift für Angewandte Mathematik und Physik. 52 (2001) pp. 543–572. | MR 1856987 | Zbl 0974.78006

[18] Borcea L., Berrymann J.G. et Papanicolaou G.C., High contrast impedance tomography, Inverse Problems 12 (1996) pp. 1–24. | MR 1421651 | Zbl 0862.35137

[19] Brühl M., Hanke M., et Vogelius M., A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math. 93 (2003), 635–654. | MR 1961882 | Zbl 1016.65079

[20] Calderón A.P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro (1980), 65-73. | MR 590275

[21] Capdeboscq Y. et Vogelius M., A general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math. Modelling Num. Anal. 37 (2003), 159–173. | Numdam | MR 1972656 | Zbl 01970497

[22] —————, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements, Math. Modelling Num. Anal. 37 (2003), 227–240. | Numdam | MR 1991198 | Zbl 01970882

[23] Cedio-Fengya D.-J., Moskow S. et Vogelius M., Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems, 14 (1998) pp. 553–595. | MR 1629995 | Zbl 0916.35132

[24] Cheney M., Isaacson D., Newell J., Simske S. et Goble J., Noser : an algorithm for solving the inverse conductivity problem, Int. J. Imaging Syst. and Technol. 22 (1990) pp. 66–75.

[25] Coifman R.R., McIntosh A. et Meyer Y., L’intégrale de Cauchy définit un opérateur bourné sur L 2 pour courbes Lipschitziennes, Ann. of Math. 116 (1982) pp. 361–387. | Zbl 0497.42012

[26] Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. | MR 1162107 | Zbl 0776.42018

[27] Dahlberg B.E., Kenig C.E. et Verchota G., Boundary value problem for the systems of elastostatics in Lipschitz domains, Duke Math. J. 57 (1988) pp. 795–818. | MR 975122 | Zbl 0699.35073

[28] Escauriaza L., Fabes E. et Verchota G., On a regularity thoerem for weak solutions to transmission problems with internal Lipschitz boundaries, Proceedings of AMS 115 (1992) pp. 1069–1076. | MR 1092919 | Zbl 0761.35013

[29] Escauriaza L. et Seo J.K., Regularity properties of solutions to transmission problems, Trans. Amer. Math. Soc. 338 (1993) pp. 405–430. | MR 1149120 | Zbl 0803.35019

[30] Fabes E.B., Kang H. et Seo J.K., Inverse conductivity problem : error estimates and approximate identification for perturbed disks, SIAM J. of Math. Anal. 30 (1999) pp. 699–720. | MR 1684722 | Zbl 0930.35194

[31] Friedman A. et Vogelius M., Identification of small inhomogeneities of extreme conductivity by boundary measurements : a theorem on continuous dependence, Arch. Rat. Mech. Anal. 105 ( 1989) pp. 299–326. | MR 973245 | Zbl 0684.35087

[32] Kang H., Kim E. et Lee J., Identification of elastic inclusions and elastic moment tensors by boundary measurements, Inverse Problems 19 (2003), 703–724. | MR 1984885 | Zbl 01940883

[33] Kang H., Kim E. et Kim K., Anistropic polarization tensors and determination of an anisotropic inclusion, SIAM J. Appl. Math. 65 (2003), 1276–1291. | MR 1989903 | Zbl 01986942

[34] Kang H. et Seo J.K., Layer potential technique for the inverse conductivity problem, Inverse Problems 12 ( 1996) pp. 267–278. | MR 1391539 | Zbl 0857.35134

[35] —————, Inverse conductivity problem with one measurement : uniqueness for balls in 3 , SIAM J. Appl. Math. 59 (1999) pp. 1533–1539. | MR 1699026 | Zbl 0931.35194

[36] Kang H., Seo J. K. et Sheen D., The inverse conductivity problem with one measurement : Stability and estimation of size, SIAM J. Math. Anal. 28 (1997) pp. 1389–1405. | MR 1474220 | Zbl 0888.35131

[37] Kleinman R.E. et Senior T.B.A., Rayleigh scattering in Low and High Frequency Asymptotics, edited by V.K. Varadan and V.V. Varadan, North-Holland (1986) pp. 1–70. | MR 901961

[38] Kohn R. et Vogelius M., Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) pp. 289–298. II. Interior results, Comm. Pure Appl. Math. 38 (1985) pp. 643–667. | MR 739921 | Zbl 0586.35089

[39] Kozlov S.M., On the domain of variation of added masses, polarization and effective characteristics of composites, J. Appl. Maths Mechs 56 (1992), 102–107. | MR 1164415 | Zbl 0786.76018

[40] Kwon O. et Seo J.K., Total size estimation and identification of multiple anomalies in the inverse electrical impedance tomography, Inverse Problems 17 (2001) pp. 59–75. | MR 1818492 | Zbl 0972.35188

[41] Kwon O., Seo J.K., et Yoon J.R., A real-time algorithm for the location search of discontinuous conductivities with one measurement, Commun. Pure Appl. Math. 55 (2002) pp. 1–29. | MR 1857878 | Zbl 1032.78005

[42] Maz’ya V.G. et Nazarov S.A., The asymptotic behavior of energy integrals under small perturbations of the boundary near corner points and conical points, Trans. Moscow Math. Soc. (1988) pp. 77–127. | Zbl 0699.35072

[43] Movchan A.B. et Serkov S.K., The Pólya-Szegö matrices in asymptotic models of dilute composite, Euro. J. Appl. Math. 8 (1997) pp. 595–621. | MR 1608611 | Zbl 0899.73306

[44] Nachman A., Global uniqueness for a two-dimensional inverse boundary value problem, Annals of Math. 143 (1996) pp. 71–96. | MR 1370758 | Zbl 0857.35135

[45] Pólya G. et Szegö G., Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematical Studies Number 27, Princeton University Press, Princeton 1951. | MR 43486 | Zbl 0044.38301

[46] Santosa F. et Vogelius M., A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990) pp. 216–243. | MR 1036240 | Zbl 0691.65087

[47] Schiffer M., Sur la polarisation et la masse virtuelle, C. R. Acad. Sci. Paris 244 (1957), 3118–3121. | MR 92009 | Zbl 0080.08301

[48] Schiffer M. et Szegö G., Virtual mass and polarization, Trans. Amer. Math. Soc. 67 (1949) pp. 130–205. | MR 33922 | Zbl 0035.11803

[49] Seo J.K., Kwon O., Ammari H. et Woo E.J., Mathematical framework and anomaly estimation algorithm for breast cancer detection using TS2000 configuration, à paraître dans IEEE Trans. Biomedical Engineering (2004).

[50] Sylvester J. et Uhlmann G., A global uniqueness theorem for an inverse boundary value problem, Annals of Math. 125 (1987) pp. 153–169. | MR 873380 | Zbl 0625.35078

[51] Verchota G., Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, J. Func. Anal. 59 ( 1984) pp. 572–611. | Zbl 0589.31005

[52] Vogelius M. et Volkov D., Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter, Math. Modelling Num. Anal. 34 (2000) pp. 723–748. | Numdam | MR 1784483 | Zbl 0971.78004