Détermination d’un champ de jauge sur d par sa transformée de Radon non-Abélienne
Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 16, 7 p.

Dans cet exposé nous présentons plusieurs résultats récents sur le problème de la détermination d’un champ de jauge sur d par sa transformée de Radon non-Abélienne le long de droites orientées. Cet exposé est basé en premier lieu sur le travail [R.Novikov, On determination of a gauge field on d from its non-abelian Radon transform along oriented straight lines, Journal of the Inst. of Math. Jussieu (2002) 1(4), 559-629].

@article{SEDP_2003-2004____A16_0,
     author = {Novikov, Roman G.},
     title = {D\'etermination d'un champ de jauge sur $\mathbb{R}^d$ par sa transform\'ee de Radon non-Ab\'elienne},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2003-2004},
     note = {talk:16},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_2003-2004____A16_0}
}
Novikov, Roman G. Détermination d’un champ de jauge sur $\mathbb{R}^d$ par sa transformée de Radon non-Abélienne. Séminaire Équations aux dérivées partielles (Polytechnique) (2003-2004), Talk no. 16, 7 p. http://www.numdam.org/item/SEDP_2003-2004____A16_0/

[1] G.Eskin, On the non-abelian Radon transform, Preprint 2004 (arXiv :math.AP/0403447) | MR 2179889 | Zbl 05018050

[2] A.S.Fokas and T.A.Ioannidou, The inverse spectral theory for the Ward equation and the 2+1 chiral model, Commun. Appl. Analysis 5 (2001), 235-246 | MR 1844193 | Zbl 1084.35534

[3] A.S.Fokas and R.G.Novikov, Discrete analogues of ¯-equation and of Radon transform, C.R.Acad.Sci.,Paris 313 (1991), 75-80 | MR 1119912 | Zbl 0748.35054

[4] J.-P.Guillement, F.Jauberteau, L.Kunyansky, R.Novikov and R.Trebossen, On single-photon emission computed tomography imaging based on an exact formula for the nonuniform attenuation correction, Inverse Problems 18 (2002), L11-L19 | MR 1955895 | Zbl 1015.65074

[5] S.V.Manakov and V.E.Zakharov, Three-dimensional model of relativistic-invariant field theory, integrable by inverse scattering transform, Lett. Math. Phys. 5 (1981), 247-253 | MR 624768

[6] F.Natterer, The mathematics of computerized tomograpy, (Teubner, Stuttgart and Wiley, Chichester, 1986) | MR 856916 | Zbl 0617.92001

[7] R.G.Novikov, Small angle scattering and X-ray transform in classical mechanics, Ark. Mat. 37 (1999), 141-169 | MR 1673429 | Zbl 1088.70009

[8] R.G.Novikov, On determination of a gauge field on d from non-abelian Radon transform along oriented straight lines, Journal of the Inst. of Math. Jussieu 1 (2002), 559-629 | MR 1954437 | Zbl 1072.53023

[9] R.G.Novikov, An inversion formula for the attenuated X-ray transformation, Ark. Mat. 40 (2002), 145-167 | MR 1948891 | Zbl 1036.53056

[10] R.G.Novikov, On the range characterization for the two-dimensional attenuated X-ray transformation, Inverse Problems 18 (2002) 677-700 | MR 1910195 | Zbl 1004.44001

[11] J.Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. K1 69 (1917), 262-267 | MR 692055

[12] V.A.Sharafutdinov, On an inverse problem of determining a connection on a vector bundle, J. Inv. Ill-Posed Problems 8 (2000), 51-88 | MR 1749620 | Zbl 0959.53011

[13] J.Villarroel, The inverse problem for Ward’s system, Stud. Appl. Math. 83 (1990), 211-222 | Zbl 0737.35055

[14] R.S.Ward, Soliton solutions in an integrable chiral model in 2+1 dimensions,J.Math.Phys 29 (1988), 386-389 | MR 927022 | Zbl 0644.58038

[15] L.B.Wertgeim, Integral geometry with matrix weight and a nonlinear problem of recovering matrices, Dokl. Akad. Nauk SSSR 319 (1991), 531-534 (in Russian) | Zbl 0767.53049